
 - 1

Marco Cantù, Object Pascal Handbook

Marco Cantù

Object Pascal Handbook

The Complete Guide to the Object Pascal programming

language for Delphi developers

Piacenza (Italy), July 2015

Delphi 10.1 Berlin Edition, June 2016

Author: Marco Cantù

Publisher: Marco Cantù

Editor: Peter W A Wood

Cover Designer: Fabrizio Schiavi (www.fsd.it)

Copyright 1995-2016 Marco Cantù, Piacenza, Italy. World rights reserved.

The author created example code in this publication expressly for the free use by its readers. Source code for
this book is copyrighted freeware, distributed via the web site http://code.marcocantu.com. The copy-
right prevents you from republishing the code in print or electronic media without permission. Readers are
granted limited permission to use this code in their applications, as long at the code itself is not distributed,
sold, or commercially exploited as a stand-alone product.

Aside from this specific exception concerning source code, no part of this publication may be stored in a
retrieval system, transmitted, or reproduced in any way, in the original or in a translated language, including
but not limited to photocopy, photograph, magnetic, or other record, without the prior agreement and writ-
ten permission of the publisher.

Delphi is a trademark of Embarcadero Technologies. Other trademarks are of the respective owners, as refer-
enced in the text. Whilst the author and publisher have made their best efforts to prepare this book, they
make no representation or warranties of any kind with regard to the completeness or accuracy of the contents
herein and accepts no liability of any kind including but not limited to performance, merchantability, fitness
for any particular purpose, or any losses or damages of any kind caused or alleged to be caused directly or
indirectly from this book.

Object Pascal Handbook

ISBN-10: 1514349949

ISBN-13: 978-1514349946

The electronic edition of this book has been licensed to Embarcadero Technologies Inc and it is
also sold directly by the author. Any other download or sale outlet is likely to be illegal. Do not
distribute the PDF version of this book without permission. The printed edition is self-published
through CreateSpace Inc and sold in several online outlets. The printed edition has not been
updated, as reflects the original book content as of July 2005.

More information on http://www.marcocantu.com/objectpascal

begin - 1

begin

To my family, Raffaella, Benedetta, and Jacopo,
with all of my love and a big thank you for all you do

to take my life ahead of my expectations

Power and simplicity, expressiveness and readability, great for learning and for pro-
fessional development alike, these are some of the traits of today's Object Pascal, a
language with a long history, a lively present, and a brilliant future ahead.

Object Pascal is a multi-faceted language. It combines the power of object-oriented
programming, advanced support for generic programming and dynamic constructs
like attributes, but without removing support for more traditional style of proce-
dural programming. A tool for all trades, with compilers and development tools
embracing the mobile era. A language ready for the future, but with solid roots in
the past.

What is the Object Pascal language for? From writing desktop apps to client-server
applications, from massive web server modules to middleware, from office automa-
tion to apps for the latest phones and tablets, from industrial automatation systems
to Internet virtual phone networks... this is not what the language could be used for,
but what it is currently used for today, in the real world.

The core of the Object Pascal language as we use today comes from its definition in
1995, a terrific year for programming languages, given that this was the year Java

Marco Cantù, Object Pascal Handbook

2 - begin

and JavaScript were also invented. While the root of the language dates back to its
Pascal ancestor, its evolution didn't stop in 1995, with core enhancements continu-
ing as of today, with the desktop and mobile compilers build by Embarcadero
Technologies and found in Delphi, and RAD Studio.

A Book on Todays' Language

Given the changing role of the language, its extension over the years, and the fact it
is now attracting new developers, I felt it important to write a book that offers com-
plete coverage of the Object Pascal language as it is today. The goal is to offer a
language manual for new developers, for developers coming from other similar lan-
guages, but also for old timers of different Pascal dialects that want to learn more
about recent language changes.

Newcomers certainly need some of the foundations, but given changes have been
pervasive even old-timers will find something new in the initial chapters.

Beside a short Appendix covering the short history of the Object Pascal language,
this book was written to cover the language as it is today. A large part of the core
features of the language hasn't changed significantly since the early versions of the
Delphi, the first implementation of modern Object Pascal in 1995.

As I'll hint throughout the book, the language has been far from stagnant during all
of these years, it has been evolving at quite a fast pace. In other books I wrote in the
past, I followed a more chronological approach, covering classic Pascal first, and
following extensions more or less as they appeared over time. In this book, however,
the idea is to use a more logical approach, progressing through the topics and cover-
ing how the language works today, and how to best use it, rather than how it evolved
over time.

As an example, native data types dating back to the original Pascal language have
method-like capabilities (thanks to intrinsic type helpers) introduced recently. So in
Chapter 2 I'll introduce how to use this feature, although it won't be until much later
than you'll figure out how to make such custom type extensions.

In other words, this book covers the Object Pascal language as it is today, teaching it
from the ground up, with only a very limited historical perspective. Even if you have
used the language in the past, you might want to skim thought the entire text look-
ing for newer features, and not focus only on the final chapters.

Marco Cantù, Object Pascal Handbook

begin - 3

Learn by Doing

The idea of the book is to explain core concepts and immediately present short
demos that readers are encouraged to try to execute, experiment with, and extend to
understand the concepts and assimilate them better. The book is not a reference
manual, explaining what the language should do in theory and listing all possible
corner cases. While trying to be precise, the focus is more on teaching the language
offering a practical step-by-step guide. Examples are generally very simple, because
the goal is to have them focused on one feature at a time.

The entire source code is available in an online code repository on GitHub. You can
download it as a single file, close the repository, or just browse it online and down-
load only the code of specific projects. It you get the repository, you'd easily update
your code in case I publish any changes or additional demos. The location on
GitHub is:

https://github.com/MarcoDelphiBooks/ObjectPascalHandbook

To compile and test the demo code, you'll need a recent version of Delphi There is a
trial version available that you can use, generally allowing you 30-days free use of
the compiler and IDE.

A Companion Web Site

The book has a companion web site with further information, links, updates and
more. There are both a static, traditional site with information at:

http://www.marcocantu.com/objectpascalhandbook

and an online page on Facebook at:

https://www.facebook.com/objectpascalhandbook

Acknowledgments

As any book, this volumes owes a lot to many people, too many to list one by one.
The person who shared most of the work on the book was my editor, Peter Wood,
who kept bearing with my ever changing schedule and was able to smoothen my
technical English very significantly as usual, helping to make this book (like my pre-
vious handbooks) what it is.

Marco Cantù, Object Pascal Handbook

4 - begin

Given my current work position as product manager at Embarcadero Technologies,
I owe a lot to all my coworkers and the members of the R&D team, as during my
time at the company my understanding of the product and its technology has fur-
ther increased thanks to the insight I've gained in countless conversations,
meetings, and email threads. Given how hard it is to make sure everyone is men-
tioned, I won't really try, but only pick three people that for their role have had a
direct input on this book: David I of Developer Relations, John Thomas (JT) who's
the head of Development tools Product Management, and Chief RAD Studio Archi-
tect Allen Bauer.

Other people outside Embarcadero continued being important contacts and at times
offering direct input, from the current group at Wintech Italia (Paolo and Andrea),
to the countless customers, Embarcadero sales and technical partners, Delphi com-
munity members, MVPs and even developers using other languages and tools I keep
meeting so often. If there is one person in this group I've spent a lot of time with,
prior to joining Embarcadero, this is Cary Jensen, with whom I've organized a few
rounds of Delphi Developer Days in Europe and the US.

And finally big thank you goes to my family for bearing with my travel schedule,
nights of meetings, plus some extra book writing on weekends. Thanks again Lella,
Benedetta, and Jacopo.

About Myself, the Author

I've spent most part of the past 20 years writing, teaching, and consulting on soft-
ware development with the Object Pascal language. I wrote the Mastering Delphi
best-selling series and later self-published several Handbooks on the development
tool (about the different versions from Delphi 2007 to Delphi XE).

I have spoken at a large number of programming conferences in most continents,
and taught to hundreds of developers at conferences, Delphi developer events,
classes hosted by companies, online webinars and CodeRage conferences.

Having worked as an independent consultant and trainer for many years, in 2013
my career took a sudden change: I accepted a position as Delphi and now RAD Stu-
dio product manager at Embarcadero Technologies, the company that builds and
sells these great development tools.

To avoid annoying you any further, I'll only add that I currently live in Italy, com-
mute to California, have a lovely wife and two wonderful kids, and enjoy getting
back to programming as much as I can.

Marco Cantù, Object Pascal Handbook

begin - 5

I hope you enjoy reading the book, as much as I enjoyed writing it (my 19th work in
print). For any further information, use any of the following contact details:

http://www.marcocantu.com
http://blog.marcocantu.com
http://twitter.com/marcocantu
https://www.google.com/+MarcoCantu
http://www.facebook.com/marcocantu

Marco Cantù, Object Pascal Handbook

6 - begin

Marco Cantù, Object Pascal Handbook

Table of Contents - 7

table of contents

begin...1
A Book on Todays' Language...2
Learn by Doing..3
A Companion Web Site..3
Acknowledgments...3
About Myself, the Author..4

Table of Contents..7

Part I: Foundations..17
Summary of Part I... 18

01: Coding in Pascal...19
Let's Start with Code... 19

A First Console Application..20
A First Visual Application..21

Syntax and Coding Style...24
Comments.. 25
Symbolic Identifiers..26
White Space... 28
Indentation.. 29
Syntax Highlighting... 31

Language Keywords.. 32
The Structure of a Program..36

Unit and Program Names..37

Marco Cantù, Object Pascal Handbook

8 - Table of Contents

Units and Scope... 40
The Program File... 42

Compiler Directives.. 43
Conditional Defines... 43
Compiler Versions...44
Include Files.. 46

02: Variables and Data Types..47
Variables and Assignments..48

Literal Values... 49
Assignment Statements...50
Assignments and Conversion...51
Initializing Global Variable..51
Constants... 52
Resource String Constants..53
Lifetime and Visibility of Variables...54

Data Types... 55
Ordinal and Numeric Types..55
Boolean.. 60
Characters.. 60
Floating Point Types..63

Simple User-Defined Data Types...65
Named vs. Unnamed Types...66
Subrange Types.. 67
Enumerated Types.. 68
Set Types.. 69

Expressions and Operators...71
Using Operators... 71
Operators and Precedence...72

Date and Time... 74
Typecasting and Type Conversions...77

03: Language Statements...81
Simple and Compound Statements..82
The If Statement... 83
Case Statements.. 85
The For Loop.. 86

The for-in Loop.. 88
While and Repeat Statements..90

Examples of Loops... 91
Breaking the Flow with Break and Continue..93

04: Procedures and Functions...95
Procedures and Functions..95

Forward Declarations..98
A Recursive Function..99
What Is a Method?.. 100

Marco Cantù, Object Pascal Handbook

Table of Contents - 9

Parameters and Return Values... 101
Exit with a Result... 102
Reference Parameters.. 103
Constant Parameters... 105
Function Overloading.. 105
Overloading and Ambiguous Calls..107
Default Parameters.. 109

Inlining.. 110
Advanced Features of Functions... 113

Object Pascal Calling Conventions...114
Procedural Types.. 114
External Functions Declarations..117
Delayed Loading of DLL Functions...118

05: Arrays and Records..121
Array Data Types... 122

Static Arrays... 122
Array Size and Boundaries.. 123
Multi-Dimensional Static Arrays...124
Dynamic Arrays... 126
Open Array Parameters... 130

Record Data Types.. 133
Using Arrays of Records.. 135
Variant Records... 136
Fields Alignments.. 137
What About the With Statement?...138

Records with Methods.. 140
Self: The Magic Behind Records..142
Records and Constructors...143
Operators Gain New Ground... 144

Variants... 149
Variants Have No Type..149
Variants in Depth... 151
Variants Are Slow... 151

What About Pointers?... 153
File Types, Anyone?.. 156

06: All About Strings..157
Unicode: An Alphabet for the Entire World...158

Characters from the Past: from ASCII to ISO Encodings...158
Unicode Code Points and Graphemes...159
From Code Points to Bytes (UTF)...160
The Byte Order Mark... 162
Looking at Unicode.. 163

The Char Type Revisited... 166
Unicode Operations With The Character Unit..167

Marco Cantù, Object Pascal Handbook

10 - Table of Contents

Unicode Character Literals..169
The String Data Type.. 170

Passing Strings as Parameters...174
The Use of [] and String Characters Counting Modes...174
Concatenating Strings.. 177
The String Helper Operations..178
More String RTL... 181
Formatting Strings... 182
The Internal Structure of Strings..184
Looking at Strings in Memory...186

Strings and Encodings.. 188
Other Types for Strings... 191

The UCS4String type.. 191
Older String Types... 192

Part II: OOP in Object Pascal...193
Summary of Part II... 194

07: Objects...195
Introducing Classes and Objects... 196

The Definition of a Class.. 196
Classes in Other OOP Languages..198
The Class Methods... 199
Creating an Object... 199

The Object Reference Model..200
Disposing Objects and ARC...201
What's Nil?.. 202
Records vs. Classes in Memory...203

Private, Protected, and Public..204
An Example of Private Data..205
When Private Is Really Private..207
Encapsulation and Forms...208

The Self Keyword.. 210
Creating Components Dynamically...211

Constructors.. 213
Managing Local Class Data with Constructors and Destructors...215
Overloaded Methods and Constructors...216
The Complete TDate Class...218

Nested Types and Nested Constants...221

08: Inheritance...225
Inheriting from Existing Types...225
A Common Base Class..227
Protected Fields and Encapsulation...229

Using the “Protected Hack”...229
From Inheritance to Polymorphism...231

Inheritance and Type Compatibility..231

Marco Cantù, Object Pascal Handbook

Table of Contents - 11

Late Binding and Polymorphism..233
Overriding, Redefining, and Reintroducing Methods..235
Inheritance and Constructors...238
Virtual versus Dynamic Methods..239

Abstracting Methods and Classes..240
Abstract Methods.. 240
Sealed Classes and Final Methods..242

Safe Type Cast Operators...243
Visual Form Inheritance...245

Inheriting From a Base Form..246

09: Handling Exceptions..251
Try-Except Blocks...252

The Exceptions Hierarchy...254
Raising Exceptions..256
Exceptions and the Stack...257

The Finally Block..258
Exceptions in the Real World...260
Global Exceptions Handling...261
Exceptions and Constructors...262
Advanced Exceptions.. 264

Nested Exceptions and the InnerException Mechanism..265
Intercepting an Exception...268

10: Properties and Events..271
Defining Properties...272

Properties Compared to Other Programming Langauges..273
Code Completion for Properties..275
Adding Properties to Forms..276
Adding Properties to the TDate Class...278
Using Array Properties..280
Setting Properties by Reference..281

The published Access Specifier..282
Design Time Properties...283
Published and Forms..284
Automatic RTTI...285

Event-Driven Programming...286
Method Pointers.. 287
The Concept of Delegation..289
Events Are Properties..292
Adding an Event to the TDate Class..293

Creating a TDate Component...295
Implementing Enumeration Support in a Class...297
15 Tips About Mixing RAD and OOP...300

Tip 1: A Form is a Class..301
Tip 2: Name Components..301

Marco Cantù, Object Pascal Handbook

12 - Table of Contents

Tip 3: Name Events...301
Tip 4: Use Form Methods...302
Tip 5: Add Form Constructors..302
Tip 6: Avoid Global Variables...302
Tip 7: Never Use Form1 In TForm1 Methods...303
Tip 8: Seldom Use Form1 In Other Forms...303
Tip 9: Remove the Global Form1 Variable..303
Tip 10: Add Form Properties..304
Tip 11: Expose Components Properties..304
Tip 12: Use Array Properties When Needed...304
Tip 13: Use Side-Effects In Properties..304
Tip 14: Hide Components..305
Tip 15: Use an OOP Form Wizard...306
Tips Conclusion (and Further Readings)..306

11: Interfaces...307
Using Interfaces.. 308

Declaring an Interface...309
Implementing the Interface...310
Interfaces and Reference Counting..311
Errors in Mixing References..313
Weak And Unsafe Interface References..314
Advanced Interface Techniques..316
Interface Properties...317
Interface Delegation..318
Multiple Interfaces and Methods Aliases...320
Interface Polymorphism..321
Extracting Objects from Interface References..323

Implementing An Adapter Pattern with Interfaces...324

12: Manipulating Classes...327
Class Methods and Class Data..327

Virtual Class Methods and the Hidden Self Parameter..328
Class Static Methods...329
Class Data... 331
Class Properties... 332
A Class with an Instance Counter...332

Class Constructors (and Destructors)..333
Class Constructors in the RTL...335
Implementing the Singleton Pattern...335

Class References...336
Class References in the RTL..338
Creating Components Using Class References...338

Class And Record Helpers..341
Class Helpers...342
Class Helpers and Inheritance..345

Marco Cantù, Object Pascal Handbook

Table of Contents - 13

Record Helpers for Intrinsic Types...345
Helpers for Type Aliases..347

13: Objects and Memory..349
Global Data, Stack, and Heap...350

Global Memory..350
Stack... 351
Heap... 351

The Object Reference Model...352
Passing Objects as Parameters..353

Traditional Memory Management Tips...354
Destroying Objects You Create..354
Destroying Objects Only Once...355

Welcome to ARC... 357
ARC Coding Style..358
The Free and DisposeOf Methods Under ARC...360
Summary of Objects Creation and Destruction under ARC and non-ARC Compilers......363
Weak References...364
The Unsafe Attribute...368
The Unsafe Directive...369
Behind Reference Counting..369
Mixing Interfaces and Classes Under ARC...370

Tracking and Checking Memory..370
Memory Status...371
FastMM4.. 371
Tracking Leaks and Other Global Settings..372
Buffer Overruns in the Full FastMM4...373
Memory Management on Platforms Other than Windows..376
Tracking Per-Class Allocations..376

Writing Robust Applications..377
Constructors, Destructors, and Exceptions...377
Nested Finally blocks...379
Dynamic Type Checking..380
Is this Pointer an Object Reference?...381

Part III: Advanced Features...385
Chapters of Part III... 386

14: Generics...387
Generic Key-Value Pairs...388

Type Rules on Generics...391
Generics in Object Pascal...392

Generic Types Compatibility Rules...393
Generic Methods for Standard Classes...394
Generic Type Instantiation..396
Generic Type Functions...397
Class Constructors for Generic Classes..400

Marco Cantù, Object Pascal Handbook

14 - Table of Contents

Generic Constraints.. 402
Class Constraints... 402
Specific Class Constraints...404
Interface Constraints...405
Interface References vs. Generic Interface Constraints...407
Default Constructor Constraint..408
Constraints Summary and Combining Them...410

Predefined Generic Containers...410
Using TList<T>..411
Sorting a TList<T>...412
Sorting with an Anonymous Method..414
Object Containers..416
Using a Generic Dictionary..416
Dictionaries vs. String Lists..420

Generic Interfaces...421
Predefined Generic Interfaces...423

Smart Pointers in Object Pascal...424
A Smart Pointer Generic Record...425
Interfaces to the Rescue..426
Using the Smart Pointer..427
Adding Implicit Conversion..427
Adding Auto-Creation...428
The Complete Smart Pointer Code..429

Covariant Return Types with Generics..430
Of Animals, Dogs, and Cats...430
A Method with a Generic Result..431
Returning a Derived Object of a Different Class...432

15: Anonymous Methods...435
Syntax and Semantics of Anonymous Methods...436

An Anonymous Method Variable..437
An Anonymous Method Parameter...437

Using Local Variables... 438
Extending the Lifetime of Local Variables..439

Anonymous Methods Behind the Scenes...441
The (Potentially) Missing Parenthesis...441
Anonymous Methods Implementation...442
Ready To Use Reference Types...443

Anonymous Methods in the Real World..445
Anonymous Event Handlers...445
Timing Anonymous Methods..447
Threads Synchronization..448
AJAX in Object Pascal...450

16: Reflection and Attributes...455
Extended RTTI.. 456

Marco Cantù, Object Pascal Handbook

Table of Contents - 15

A First Example... 456
Compiler Generated Information...458
Weak and Strong Types Linking...459

The RTTI Unit.. 460
The RTTI Classes in the Rtti Unit...462
RTTI Objects Lifetime Management and the TRttiContext record....................................463
Displaying Class Information..465
RTTI for Packages... 466

The TValue Structure.. 467
Reading a Property with TValue...469
Invoking Methods...470

Using Attributes.. 471
What is an Attribute?...471
Attribute Classes and Attribute Declarations...472
Browsing Attributes...474

Virtual Methods Interceptors...476
RTTI Case Studies... 479

Attributes for ID and Description...480
XML Streaming... 484
Other RTTI-Based Libraries..491

17: TObject and the System Unit..493
The TObject Class... 494

Construction and Destruction...494
Knowing About an Object...495
More Methods of the TObject Class..496
TObject's Virtual Methods..498
TObject Class Summary...501
Unicode and Class Names...502

The System Unit... 503
Selected System Types..504
Interfaces in the System Unit..505
Selected System Routines...505
Predefined RTTI Attributes...506

18: Other Core RTL Classes...509
The Classes Unit.. 510

The Classes in the Classes Unit..510
The TPersistent Class...512
The TComponent Class..512

Modern File Access... 515
The Input/Output Utilities Unit..516
Introducing Streams..517
Using Readers and Writers..519

Building Strings and String Lists..521
The TStringBuilder class...522

Marco Cantù, Object Pascal Handbook

16 - Table of Contents

Using String Lists..523
The Run-Time Library is Quite Large..524
In Closing.. 526

end.. 527
Appendix Summary.. 527

A: The Evolution of Object Pascal..529
Wirth’s Pascal... 530
Turbo Pascal... 530
The early days of Delphi’s Object Pascal...531
Object Pascal From CodeGear to Embarcadero...532
Going Mobile... 533

B: Glossary..535
A.. 535
B.. 536
C.. 537
D.. 538
E.. 539
F.. 539
G.. 540
H... 540
I.. 541
M... 542
O.. 542
P.. 542
R.. 543
S.. 544
U.. 545
V.. 545
W... 546

C: Index...547

Marco Cantù, Object Pascal Handbook

Part I: Foundations - 17

part i: foundations

Object Pascal is an extremely powerful language based upon core foundations such
as a good program structure and extensible data types. These foundations are par-
tially derived from the traditional Pascal language, but even the core language
features have seen many extensions from the early days.

In this first part of the book, you'll lean about the language syntax, the coding style,
the structure of programs, the use of variables and data types, the fundamental lan-
guage statements (like conditions and loops), the use of procedures and functions,
and core type constructors such as arrays, records, and strings.

These are the foundations of the more advanced features, from classes to generic
types, that we'll explore in the second and third parts of the book. Learning a lan-
guage is like building a house, and you need to start on solid ground and good
foundations, or everything else up and above would be shining... but shaky.

Marco Cantù, Object Pascal Handbook

18 - Part I: Foundations

Summary of Part I

Chapter 1: Coding in Pascal

Chapter 2: Variables and Data Types

Chapter 3: Language Statements

Chapter 4: Procedures and Functions

Chapter 5: Arrays and Records

Chapter 6: All About Strings

Marco Cantù, Object Pascal Handbook

01: Coding in Pascal - 19

01: coding in

pascal

This chapter starts with some of the building blocks of an Object Pascal application,
covering standard ways of writing code and related comments, introducing key-
words, and the structure of a program. I'll start writing some simple applications,
trying to explain what they do and thus introducing some other key concepts cov-
ered in more details in the coming chapters.

Let's Start with Code

This chapter covers the foundation of the language, but it will take me a few chap-
ters to guide you through the details of a complete working application. So for now
let's have a look at two first programs (different in their structure), without really
getting into too many details. Here I just want to show you the structure of pro-
grams that I'll use to build demos explaining specific language constructs before I'll

Marco Cantù, Object Pascal Handbook

20 - 01: Coding in Pascal

be able to cover all of the various elements. Given that I want you to be able to start
putting the information in the book into practice as soon as possible, looking at
demo examples from the beginning would be a good idea.

Object Pascal has been designed to work hand-in-glove with its Integrated Develop-
ment Environment. It is through this powerful combination that Object Pascal can
match the ease of development speed of programmer-friendly languages and at the
same time match the running speed of machine-friendly languages.

The IDE lets you design user interfaces, help you write code, run your programs and
much, much more. I'll be using the IDE throughout this book as I introduce Object
Pascal to you.

A First Console Application

As a starting point, I'm going to show you the code of a simple Hello, World console
application showing some of the structural elements of an Object Pascal program. A
console application is a program with no graphical user interface, displaying text
and accepting keyboard input, and generally executed from an operating system
console or command prompt. Console apps generally make little sense on mobile
platforms, and are seldom used on PCs these days.

I won't explain what the different elements of the code below mean just yet, as that
is the purpose of the first few chapters of the book. Here is the code, from the Hel-
loConsole application project:

program HelloConsole;

{$APPTYPE CONSOLE}

var
 strMessage: string;

begin
 strMessage := 'Hello, World';
 writeln (strMessage);
 // wait until the Enter key is pressed
 readln;
end.

note As explained in the introduction, the complete source code of all of the demos covered in the book
is available in a subversion repository. Refer to the book introduction for more details on how to
get those demos. In the text I refer to the project name (in this case HelloConsole), which is also
the name of the folder containing the various files of the demo. The project folders are grouped by
chapter, so you'll find this first demo under 01/HelloConsole.

Marco Cantù, Object Pascal Handbook

01: Coding in Pascal - 21

You can see the program name in the first line after a specific declaration, a com-
piler directive (prefixed by the $ symbol and enclosed in curly braces), a variable
declaration (a string with a given name), and three lines of code plus a comment
within the main begin-end block. Those three lines of code copy a value into the
string, call a system function to write that line of text to the console, and call another
system function to read a line of user input (or in this case to wait until the user
pressed the Enter key). As we'll see, you can define your own functions, but Object
Pascal comes with hundreds of pre-defined ones.

Again, we'll learn about all of these elements soon, as this initial section serves only
to give you an idea of what a small but complete Pascal program looks like. Of
course you can open and run this application, which will produce output like the fol-
lowing (the actual Windows version is displayed in Figure 1.1).

Hello, World

Figure 1.1:
The output of the
HelloConsole example,
running on Windows

A First Visual Application

A modern application, though, rarely looks like this old fashioned console program,
but is generally made of visual elements (referred to as controls) displayed in win-
dows (referred to as forms). In most cases in this book I'll build visual demos (even
if in most cases they'll boil down to displaying simple text) using the FireMonkey
library (which is also known as FMX).

note In Delphi the visual controls come in two flavors: VCL (Visual Component Library for Windows)
and FireMonkey (a multi-device library for all supported platforms, desktop and mobile). In any
case, it should be rather simple to adapt the demos to the Windows-specific VCL library.

Marco Cantù, Object Pascal Handbook

22 - 01: Coding in Pascal

To understand the exact structure of a visual application, you'll have to read a good
part of this book, as a form is an object of a given class and has methods, event han-
dlers, and properties... all features that will take a while to go through. But to be
able to create these applications, you don't need to be an expert, as all you have to
do is use a menu command to create a new desktop or mobile application. What I'll
do in the initial part of the book is to base the demos on the FireMonkey platform
and simply use the context of forms and button click operations. To get started, you
can create a form of any type (desktop or mobile, I'd generally pick a mobile “blank”
application, as it will also run on Windows), and place a button control on it, with a
multi-line text control (or Memo) after it to display the output. Figure 1.2 shows
how your form will look for a mobile application in the IDE, given the default set-
tings.

What you have to do to create a similar application is to add a button to an empty
mobile form. Now to add the actual code, which is the only thing we are interested
in for now, double click on the button, you'll be presented with the following code
skeleton (or something very similar):

procedure TForm1.Button1Click (Sender: TObject)
begin

end;

Even if you don't know what a method of a class is (which is what Button1Click is),
you can type something in that code fragment (that means within the begin and end
keywords) and that code will execute when you press the button.

Our first “visual” program has code matching that of the first console application,
only in a different context and calling a different library function, namely ShowMes-
sage. This is the code you can find in the HelloVisual application project and you
can try rebuilding it from scratch quite easily:

procedure TForm1.Button1Click (Sender: TObject)
var
 strMessage: string;
begin
 strMessage := 'Hello, World';
 ShowMessage (strMessage);
end;

Marco Cantù, Object Pascal Handbook

01: Coding in Pascal - 23

Figure 1.2:
A simple mobile
application with a
single button, used by
the HelloVisual demo

Notice how you need to place the declaration of the strMessage variable before the
begin statement and the actual code after it. Again, don't worry if things are not
clear, everything will get explained in due time and in great detail.

note You can find the source code of this demo in a folder under the 01 container for the chapter. In
this case, however, there is a project file name like the demo but also a secondary unit file with the
word “Form” added after the project name. That's the standard I'm going to follow in the book.
The structure of a project is covered at the end of this chapter.

In Figure 1.3 you can see the output of this simple program, running on Windows
(but you can run this demo on Android and iOS as well).

Now that we have a way to write and test a demo program, let's get back to square
one, by covering all of the details of the first few building blocks of an application, as
I promised at the beginning of this chapter. The first thing you need to know is how

Marco Cantù, Object Pascal Handbook

24 - 01: Coding in Pascal

to read a program, how the various elements are written, and what is the structure
of the application we just build (which has both a PAS file and DPR file).

Figure 1.3:
A simple mobile
application with a
single button, used by
the HelloVisual demo

Syntax and Coding Style

Before we move on to the subject of writing actual Object Pascal language state-
ments, it is important to highlight some elements of Object Pascal coding style. The
question I'm addressing here is this: Besides the syntax rules (which we still haven't
looked into), how should you write code? There isn't a single answer to this ques-
tion, since personal taste can dictate different styles. However, there are some
principles you need to know regarding comments, uppercase, spaces, and what
many years ago was called pretty-printing (pretty for us human beings, not the
computer), a term now considered obsolete.

Marco Cantù, Object Pascal Handbook

01: Coding in Pascal - 25

In general, the goal of any coding style is clarity. The style and formatting decisions
you make are a form of shorthand, indicating the purpose of a given piece of code.
An essential tool for clarity is consistency—whatever style you choose, be sure to fol-
low it throughout a project and across projects.

note The IDE (Integrated Development Environment) has support for automatic code formatting (at
the unit or project level): You can ask the editor to re-format your code with the Ctrl+D keys, fol-
lowing a set of rules you can change by tweaking about 40 different formatting elements (found
among the IDE Options), and even share these settings with other developers on your team to
make formatting consistent.

Comments

Although code is often self-explanatory, it is relevant to add a significant amount of
comments in the source code of a program, to further explain to others (and to
yourself when you look at your code a long time in the future) why the code was
written in a given way and what were the assumptions.

In traditional Wirth Pascal comments were enclosed in either braces or parentheses
followed by a star. Modern versions of the language also accept the C++ style com-
ments, double slash, which span to the end of the line and require no symbol to
indicate the end the comment:

{ this is a comment }
(* this is another comment *)
// this is a comment up to the end of the line

The first form is shorter and more commonly used. The second form was often pre-
ferred in Europe because many European keyboards lacked the brace symbol. The
third form of comment has been borrowed from C/C++, which also use the /* com-
ment */ syntax for multi-line comments, along with C#, Objective-C, Java, and
JavaScript.

Comments up to the end of the line are very helpful for short comments and for
commenting out a single line of code. They are by far the most common form of
comments in the Object Pascal language.

note In the IDE editor, you can comment or uncomment the current line (or a group of selected lines)
with a direct keystroke. This is Ctrl+/ on the US keyboard and a different combination (with the
physical / key) on other keyboards: The actual key is listed in the popup menu of the editor.

Having three different forms of comments can be helpful for marking nested com-
ments. If you want to comment out several lines of source code to disable them, and

Marco Cantù, Object Pascal Handbook

26 - 01: Coding in Pascal

these lines contain some real comments, you cannot use the same comment identi-
fier:

{
 code...
 {comment, creating problems}
 code...
}

The code above results in a compiler error, as the first closed brace indicates the end
of the entire commented section. With a second comment identifier, you can write
the following code, which is correct:

{
 code...
 // this comment is OK
 code...
}

An alternative is to comment out a group of lines as explained above, given it will
add a second // comment to the commented line, you can easily remove by uncom-
menting the same block (preserving the original comment).

note If the open brace or parenthesis-star is followed by the dollar sign($), it is not a comment any
more, but becomes a compiler directive, as we have seen in the first demo in the line {$APPTYPE
CONSOLE}. Compiler directives instruct the compiler to do something special, and are briefly
explained towards the end of this chapter.

Actually, compiler directives are still comments. For example, {$X+ This is a comment} is legal.
It's both a valid directive and a comment, although most sane programmers will probably tend to
separate directives and comments.

Symbolic Identifiers

A program is made of many different symbols you can introduce to name the vari-
ous elements (data types, variables, functions, objects, classes, and so on). Although
you can use almost any identifier you want, there are a few rules you have to follow:

• Identifiers cannot include spaces (as spaces do separate identifiers from
other language elements)

• Identifiers can use letters and numbers, including the letters in the entire
Unicode alphabet; so you can name symbols in your own language if you
want

• Out of the traditional ASCII symbols, identifiers can use only the underscore
symbol (_); all other ASCII symbols beside letters and numbers are not
allowed. Illegal symbols in identifiers include match symbols (+, -, *, /, =),

Marco Cantù, Object Pascal Handbook

01: Coding in Pascal - 27

all parenthesis and braces, punctuation, special characters (including @, #,
$, %, ^, &, \, |). What you can use, though, are Unicode symbols, like or ∞.

• Identifiers must start with a letter or the underscore, starting with a number
is not allowed (in other words, you can use numbers, but not as the first
symbol). Here with numbers we refer to the ASCII numbers, 0 to 9, while
other Unicode representations of numbers are allowed.

The following are examples of classic identifiers, listed in the IdentifiersTest
application:

MyValue
Value1
My_Value
_Value
Val123
_123

These are example of legal Unicode identifiers (where the last is a bit extreme):

Cantù (Latin accented letter)

 结 (Cash Balance in Simplified Chinese)

 画像 (picture in Japanese)
☼ (Sun Unicode symbol)

These are a few examples of invalid identifiers:

123
1Value
My Value
My-Value
My%Value

tip In case you want to check for a valid identifier at runtime (something rarely needed, unless you
are writing a tool to help other developers), there is a function in the runtime library that you can
use, called IsValidIdent.

Use of Uppercase

Unlike many other languages, including all those based on the C syntax (like C++,
Java, C#, and JavaScript), the Object Pascal compiler ignores the case, or capitaliza-
tion, of the identifiers. Therefore, the identifiers Myname, MyName, myname, myName,
and MYNAME are all exactly the same. In my opinion, case-insensitivity is definitely a
positive feature, as syntax errors and other subtle mistakes can be caused by incor-
rect capitalization in case-sensitive languages.

If you consider the fact that you can use Unicode for identifiers, however, things get
a bit more complicated, as the uppercase version of a letter is treated like the same

Marco Cantù, Object Pascal Handbook

28 - 01: Coding in Pascal

element, while an accented version of the same letter is treated like a separate sym-
bol. In other words:

 cantu: Integer;
 Cantu: Integer; // error: duplicate identifier
 cantù: Integer; // correct: different identifier

note There is only one exception to the case-insensitivity rule of the language: the Register procedure
of a components' package must start with the uppercase R, because of a C++ compatibility issue.
Of course, when you refer to identifiers exported by other languages (like a native operating sys-
tem function) you might have to use the proper capitalization.

There are a couple of subtle drawbacks, however. First, you must be aware that
these identifiers really are the same, so you must avoid using them as different ele-
ments. Second, you should try to be consistent in the use of uppercase letters, to
improve the readability of the code.

A consistent use of case isn't enforced by the compiler, but it is a good habit to get
into. A common approach is to capitalize only the first letter of each identifier.
When an identifier is made up of several consecutive words (you cannot insert a
space in an identifier), every first letter of a word should be capitalized:

MyLongIdentifier
MyVeryLongAndAlmostStupidIdentifier

This is often called “Pascal-casing”, to contrast it with the so-called “Camel-casing”
of Java and other languages based on the C syntax, which capitalizes internal words
with an initial lowercase letter, as in

myLongIdentifier

Actually, it is more and more common to see Object Pascal code in which local vari-
ables use camel-casing (lowercase initial), while class elements, parameters and
other more global elements use the Pascal-casing. In any case, in the book source
code snippets I've tried to use Pascal-casing consistently for all symbols.

White Space

Other elements completely ignored by the compiler are the spaces, new lines, and
tabs you add to the source code. All these elements are collectively known as white
space. White space is used only to improve code readability; it does not affect the
compilation in any way.

Unlike traditional BASIC, Object Pascal allows you to write a statement over several
lines of code, splitting a long instruction over two or more lines. The drawback of
allowing statements over more than one line is that you have to remember to add a

Marco Cantù, Object Pascal Handbook

01: Coding in Pascal - 29

semicolon to indicate the end of a statement, or more precisely, to separate one
statement from the next. The only restriction in splitting programming statements
on different lines is that a string literal may not span several lines.

Although odd, the following blocks all represent the same statement:

a := b + 10;

a :=
 b
 +
 10;

a
:=
// this is a mid-statement comment
b + 10;

Again, there are no fixed rules on the use of spaces and multiple-line statements,
just some rules of thumb:

 The editor has a vertical line you can place after 80 or so characters. If you use
this line and try to avoid surpassing this limit, your source code will look better
and you won't have to scroll horizontally to read it on a computer with a smaller
screen. The original idea behind the 80 characters was to make the code look
nicer when printed, something not so common these days (but still valuable).

 When a function or procedure has several complex parameters, it is common
practice to place the parameters on different lines, a habit that mostly comes
from the C language.

 You can leave a line completely white (blank) before a comment or to divide a
long piece of code in smaller portions. Even this simple idea can improve the
readability of the code.

 Use spaces to separate the parameters of a function call, and maybe even a space
before the initial open parenthesis. Also I like keeping operands of an expression
separated, although this is a matter of preference..

Indentation

The last suggestion on the use of white spaces relates to the typical Pascal language-
formatting style, originally known as pretty-printing but now generally referred as
indentation.

This rule is simple: Each time you need to write a compound statement, indent it
two spaces (not a tab, like a C programmer would generally do) to the right of the

Marco Cantù, Object Pascal Handbook

30 - 01: Coding in Pascal

current statement. A compound statement inside another compound statement is
indented four spaces, and so on:

if ... then
 statement;

if ... then
begin
 statement1;
 statement2;
end;

if ... then
begin
 if ... then
 statement1;
 statement2;
end;

Again, programmers have different interpretations of this general rule. Some pro-
grammers indent the begin and end statements to the level of the inner code, other
programmers put the begin at the end of the line of previous statement (in a C-like
fashion). This is mostly a matter of personal taste.

A similar indentation format is often used for lists of variables or data types:

type
 Letters = ('A', 'B', 'C');
 AnotherType = ...

var
 Name: string;
 I: Integer;

In the past it was also common to use an column-based indentation of the separa-
tor, when declaring custom types and variables, but this is now less frequent. In
such a case, the code above will look like the not-recommended code below:

type
 Letters = ('A', 'B', 'C');
 AnotherType = ...

var
 Name : string;
 I : Integer;

Indentation is also used commonly for statements that continue from the previous
line or for the parameters of a function (if you don't put each parameter on a sepa-
rate line):

MessageDlg ('This is a message',
 mtInformation, [mbOk], 0);

Marco Cantù, Object Pascal Handbook

01: Coding in Pascal - 31

Syntax Highlighting

To make it easier to read and write Object Pascal code, the IDE editor has a feature
called syntax highlighting. Depending on the meaning in the language of the words
you type, they are displayed using different colors and font styles. By default, key-
words are in bold, strings and comments are in color (and often in italic), and so on.

Reserved words, comments, and strings are probably the three elements that bene-
fit most from this feature. You can see at a glance a misspelt keyword, a string not
properly terminated, and the length of a multiple-line comment.

You can easily customize the syntax highlight settings using the Editor Colors page
of the Options dialog box of the IDE. If you are the only person using your computer
to look to Object Pascal source code, choose the colors you like. If you work closely
with other programmers, you should all agree on a standard color scheme. I often
found that working on a computer with a different syntax coloring than the one I
normally use was really confusing.

Error Insight and Code Insights

The IDE editor has many more features to help you write correct code. The most
obvious is Error Insight, that places a red squiggle under source code elements it
doesn't understand, in the same fashion that a word processor marks spelling mis-
takes.

note At times you need to compile your program a first time to avoid having Error Insight indications
for perfectly legitimate code. Also saving a file such as a form might force the inclusion of the
proper units required for the current components, solving incorrect Error Insight indications.

Other features, like Code Completion, help you write code by providing a list of
legitimate symbols in the place where you are writing. When a function or method
has parameters, you'll see those listed as you type. And you can also hover over a
symbol to see its definition. However, these are editor specific features that I don't
want to delve into in detail, as I want to remain focused on the language and not
discuss the IDE editor in detail (even if it is by far the most common tools used for
writing Object Pascal code).

Marco Cantù, Object Pascal Handbook

32 - 01: Coding in Pascal

Language Keywords

Keywords are all the identifiers reserved by the language. These are symbols that
have a predefined meaning and role and you cannot use them in a different context.
Formally there is a distinction between reserved words and directives: Reserved
words cannot be used as identifiers, while directives have a special meaning but
could be used also in a different context (although you are recommended not to do
so). In practice, you should not use any keyword as an identifier.

If you write some code like the following (where property is indeed a keyword):

var
 property: string

you'll see an error message like:

E2029 Identifier expected but 'PROPERTY' found

In general when you misuse a keyword, you'll get different error messages depend-
ing on the situation, as the compiler recognizes the keyword, but gets confused by
its position in the code or by the following elements.

Here I don't want to show you a complete list of keywords, as some of them are
rather obscure and rarely used, but only list a few, grouping them by their role. It
will take me several chapters to explore all of these keywords and others I'm skip-
ping in this list.

note Notice that some keywords can be used in different contexts, and here I'm generally referring only
to the most common context (although a couple of keywords are listed twice). One of the reasons
is that over the years the compiler team wanted to avoid introducing new keywords, as this might
break existing applications, so they recycled some of the existing ones.

So let's start our exploration of keywords with some you've already seen in the ini-
tial demo source code and that are used to define the structure of an
application project:

program Indicates the name of an application project

library Indicates the name of a library project

package Indicates the name of a package library project

unit Indicates the name of a unit, a source code file

uses Refers to other units the code relies upon

interface The part of a unit with declarations

Marco Cantù, Object Pascal Handbook

01: Coding in Pascal - 33

implementation The part of a unit with the actual code

initialization Code executed when a program starts

finalization Code executed on program termination

begin The start of a block of code

end The end of a block of code

Another set of keywords relates to the declaration of different basic data types
and variables of such data types:

type Introduces a block of type declarations

var Introduces a block of variable declarations

const Introduces a block of constant declarations

set Defines a power set data type

string Defines a string variable or custom string type

array Defines an array type

record Defines a record type

integer Defines an integer variable

real, single,
double

Define floating point variables

file Defines a file

note There are many other data types defined in Object Pascal that I will cover later.

A third group includes keywords is used for the basic language statements, such
a condition and loops, including also functions and procedures:

if Introduces a conditional statement

then Separates the condition from the code to execute

else Indicates possible alternative code

case Introduces a conditional statement with multiple
options

of Separates the condition from the options

for Introduces a fixes repetitive cycle

to Indicates the final upper value of the for cycle

Marco Cantù, Object Pascal Handbook

34 - 01: Coding in Pascal

downto Indicates the final lower value of the for cycle

in Indicates the collection to iterate over in a cycle

while Introduces a conditional repetitive cycle

do Separates the cycle condition from the code

repeat Introduces a repetitive cycle with a final condi-
tion

until Indicates the final condition of the cycle

with Indicates a data structure to work with

function A sub-routine or group of statements returning a
result

procedure A sub-routine or group of statements which
doesn't return a result

inline Requests the compiler to optimize a function or
procedure

overload Allows the reuse of the name of a function or pro-
cedure

Many other keywords relate with classes and objects:

class Indicates a class type

object Used to indicate an older class type (now depre-
cated)

abstract A class that is not fully defined

sealed A class from which other classes cannot inherit

interface Indicates an interface type (listed also in the first
group)

constructor An object or class initialization method

destructor An object or class cleanup method

virtual A virtual method

override The modified version of a virtual method

inherited Refers to a method of the base class

private Portion of a class not accessible from the outside

Marco Cantù, Object Pascal Handbook

01: Coding in Pascal - 35

protected Portion of a class with limited access from the
outside

public Portion of a class fully accessible from the outside

published Portion of a class made specifically available to
users

strict A stronger limitation for private and protected
sections

property A symbol mapped to a value or method

read The mapper for getting the value of a property

write The mapper for setting the value of a property

nil The value of a zero object (used also for other
entities)

A smaller group of keywords is used for exceptions handling (see Chapter 11):

try The start of an exception handling block

finally Introduces code to be executed regardless of an
exception

except Introduces code to be executed in case of an
exception

raise Used to trigger an exception

Another group of keywords is used for operators and is covered in the section
“Expressions and Operators” later in this chapter, (beside some advanced operators
covered only in later chapters):

as and div
is in mod
not or shl
shr xor

Finally, here is partial list of other rarely used keywords, including some old
ones you should really avoid using. Look them up in the help or in the index of this
book, if you are interested in more information about these:

default dynamic export
exports external file
forward goto index
label message name
nodefault on out

Marco Cantù, Object Pascal Handbook

36 - 01: Coding in Pascal

packed reintroduce requires

Notice that the list of Object Pascal language keywords has seen very few additions
over recent years, as any additional keyword implies potentially introducing compi-
lation errors into some existing programs preventing that had happened to use one
of the new keyword as a symbol. Most of the recent additions to the language
required no new keyword, like generics and anonymous methods.

The Structure of a Program

You hardly ever write all of the code in a single file, although this was the case with
the first simple console application I showed earlier in this chapter. As soon as you
create a visual application, you get at least one secondary source code file beside the
project file. This secondary file is called unit and it's indicated by the PAS extension
(for Pascal source unit), while the main project file uses the DPR extension (for Del-
phi Project file). Both files contain Object Pascal source code.

Object Pascal makes extensive use of units, or program modules. Units, in fact, can
be used to provide modularity and encapsulation even without using objects. An
Object Pascal application is generally made up of several units, including units host-
ing forms and data modules. In fact, when you add a new form to a project, the IDE
actually adds a new unit, which defines the code of the new form.

Units do not need to define forms; they can simply define and make available a col-
lection of routines, or one of more data types (including classes). If you add a new
blank unit to a project, it will only contain the keywords used to delimit the sections
a unit is divided into:

unit Unit1;

interface

implementation

end.

The structure of a unit is rather simple, as shown above:

· First, a unit has a unique name corresponding to its filename (that is, the sample
unit above must be stored in the file Unit1.pas).

· Second, the unit has an interface section declaring what is visible to other units.

· Third, the unit has an implementation section with implementation details, the
actual code, and possibly other local declarations, not visible outside of the unit.

Marco Cantù, Object Pascal Handbook

01: Coding in Pascal - 37

Unit and Program Names

As I mentioned a unit name must correspond to the name of the file of that unit.
The same is true for a program. To rename a unit, you perform a Save As operation
in the IDE, and the two will be kept in synch. Of course, you can also change the file
name at the file system level, but if you don't also change the declaration at the
beginning of the unit, you'll see an error when the unit is compiled (or even when it
is loaded in the IDE). This is a sample error message you'll get if you change the
declaration of a unit without updating also the file name:

[DCC Error] E1038 Unit identifier 'Unit3' does not match file name

The implication of this rule is that a unit or program name must be a valid Pascal
identifier, but also a valid file name in the file system. For example, it cannot con-
tain a space, not special characters beside the underscore (_), as covered earlier in
this chapter in the section on identifiers. Given units and programs must be named
using an Object Pascal identifier, they automatically result in valid file names, so
you should not worry about that. The exception, of course, would be using Unicode
symbols that are not valid file names at the file system level.

Dotted Unit Names

There is an extension to the basic rules for unit identifiers: a unit name can use a
dotted notation. So all of the following are all valid unit names:

unit1
myproject.unit1
mycompany.myproject.unit1

The reason for this extension is that unit names must be unique, and with more and
more units being provided by Embarcadero and by third party vendors, this became
more and more complex. All of the RTL units and the various other units that ship
as part of the product libraries now follow the dotted unit name rule, with specific
prefixes denoting the area, such as:

· System for core RTL

· Data for database access and the like

· FMX for the FireMonkey platform, the single-source multi-device architecture for
desktop and mobile

· VCL for the Visual Component Library for Windows

Marco Cantù, Object Pascal Handbook

38 - 01: Coding in Pascal

note You'd generally refer to a dotted unit names, including the library units, with the complete name.
It is also possible to use only the last portion of the name in a reference (allowing backward com-
patibility with older code) by setting up a corresponding rule in the project options. This setting is
called “Unit scope names” and it is a semicolon separated list. Notice, however, that using this fea-
ture tends to slow down the compilation compared to using fully qualified unit names.

More on the Structure of a Unit

Beside the interface and implementation sections, a unit can have an optional ini-
tialization section with some startup code, to be executed when the program is
first loaded into memory. If there is an initialization section, you can also have a
finalization section, to be executed on program termination.

note You can also add initialization code in a class constructor, a recent language feature covered in
Chapter 12. Using class constructors helps the linker remove unneeded code, which is why it is
recommended to use class constructors and destructors, rather than the old initialization and
finalization sections. As a historical note, the compiler still supports using the begin keyword in
place of the initialization keyword. A similar use of begin is still standard in the project
source code.

In other word, the general structure of a unit, with all its possible sections and some
sample elements, is like the following:

unit unitName;

interface

// other units we refer to in the interface section
uses
 unitA, unitB, unitC;

// exported type definitions
type
 newType = TypeDefinition;

// exported constants
const
 Zero = 0;

// global variables
var
 Total: Integer;

// list of exported functions and procedures
procedure MyProc;

implementation

Marco Cantù, Object Pascal Handbook

01: Coding in Pascal - 39

// other units we refer to in the implementation
uses
 unitD, unitE;

// hidden global variable
var
 PartialTotal: Integer;

// all the exported functions must be coded
procedure MyProc;
begin
 // ... code of procedure MyProc
end;

initialization
 // optional initialization code

finalization
 // optional clean-up code

end.

The purpose of the interface part of a unit is to make details of what the unit con-
tains and can do to programs and other units that will make use of the unit.
Whereas the implementation part contains the nuts and bolts of the unit which are
hidden from outside viewers. This is how Object Pascal can provide this so called
encapsulation even without using classes and objects.

As you can see, the interface of a unit can declare a number of different elements,
including procedures, functions, global variables, and data types. Data types are
generally used the most. The IDE automatically places a new class data type in a
unit each time you create a visual form. However, containing form definitions is cer-
tainly not the only use for units in Object Pascal. You can have code only units, with
functions and procedures (in a traditional way) and with classes that do not refer to
forms or other visual elements.

Within an interface or an implementation section, the declarations for types, vari-
ables, constants, and the like can be written in any order and can be repeated
multiple times. You can have a few constants, some types, then more constants,
other variables, and another types section. The only rule is that to refer to a symbol
this needs to be declared before it is referenced, which is the reason you often need
to have multiple sections.

The Uses Clause

The uses clause at the beginning of the interface section indicates which other units
we need to access in the interface portion of the unit. This includes the units that

Marco Cantù, Object Pascal Handbook

40 - 01: Coding in Pascal

define the data types we refer to in the definition of data types of this unit, such as
the components used within a form we are defining.

The second uses clause, at the beginning of the implementation section, indicates
additional units we need to access only in the implementation code. When you need
to refer to other units from the code of the routines and methods, you should add
elements in this second uses clause instead of the first one. All the units you refer to
must be present in the project directory or in a directory of the search path.

tip You can set the Search Path for a project in the Project Options. The system also considers units in
the Library path, which is a global setting of the IDE.

C++ programmers should be aware that the uses statement does not correspond to
an include directive. The effect of a uses statement is to import just the pre-com-
piled interface portion of the units listed. The implementation portion of the unit is
considered only when that unit is compiled. The units you refer to can be both in
source code format (PAS) or compiled format (DCU).

Although seldom used, Object Pascal had also an $INCLUDE compiler directive that
works similarly to C/C++ includes. These special include files are used by some
libraries for sharing compiler directives or other settings among multiple units, and
generally have the INC file extension. This directive is covered shortly at the end of
this chapter.

note Notice that compiled units in Object Pascal are compatible only if they are build with the same
version of the compiler and system libraries. A unit compiled in an older version of the product is
generally not compatible with a later version of the compiler.

Units and Scope

In Object Pascal units are the key to encapsulation and visibility and, in that sense,
they are probably even more important than the private and public keywords of a
class. The scope of an identifier (such as a variable, procedure, function, or a data
type) is the portion of the code in which the identifier is accessible or visible. The
basic rule is that an identifier is meaningful only within its scope—that is, only
within the unit, function, or procedure in which it is declared. You cannot use an
identifier outside its scope.

note Unlike C or C++, Object Pascal doesn't have the concept of a generic code block that can include a
declaration. While you can use begin and end to create a compound statement, this isn't like a C or
C++ block with curly braces that has its own scope for internally declared variables.

Marco Cantù, Object Pascal Handbook

01: Coding in Pascal - 41

In general, an identifier is visible only after it is defined. There are techniques in the
language that allow declaring an identifier before its complete definition, but the
general rule still applies if we consider both definitions and declarations.

Given that it makes little sense to write an entire program in a single file, though,
how does the rule above change when you use multiple units? In short, by referring
to another unit with a uses statement, the identifiers in the interface section of that
unit become visible to the new unit.

Reversing the perspective, if you declare an identifier (type, function, class, vari-
able, and so on) in the interface portion of a unit, it becomes visible to any other
module referring to that unit. If you declare an identifier in the implementation
portion of a unit, instead, it can only be used in that unit (and it is generally referred
to as a local identifier).

Using Units Like Namespaces

We have seen that the uses statement is the standard technique to access identifiers
declared in the scope of another unit. At that point you can access the definitions of
the unit. But it might happen that two units you refer to declare the same identifier;
that is, you might have two classes or two routines with the same name.

In this case you can simply use the unit name to prefix the name of the type or rou-
tine defined in the unit. For example, you can refer to the ComputeTotal procedure
defined in the given Calc unit as Calc.ComputeTotal. This isn't required often, as
you are strongly advised against using the same identifier for two different elements
of the same program, if you can avoid it.

However, if you look into the system or third party libraries, you’ll find functions
and classes that have the same name. A good example are the visual controls of dif-
ferent user interface frameworks. When you see a reference to TForm or TControl, it
could mean different classes depending on the actual units you refer to.

If the same identifier is exposed by two units in your uses statement, the one in the
last unit being used overrides the symbol, and will be the one that the compiler
uses. In other words, the symbols defined in the last unit in the list wins. If you sim-
ply cannot avoid such a scenario, it is recommended to prefix the symbol with the
unit name, to avoid having you code depend on the order in which the units are
listed.

Marco Cantù, Object Pascal Handbook

42 - 01: Coding in Pascal

The Program File

As we have seen, a Delphi application consists of two kinds of source code files: one
or more units and one, and only one, program file (saved in a DPR file). The units
can be considered secondary files, which are referenced by the main part of the
application, the program. In theory, this is true. In practice, the program file is usu-
ally an automatically generated file with a limited role. It simply needs to start up
the program, generally creating and running the main form, in case of a visual
application. The code of the program file can be edited manually, but it is also modi-
fied automatically by using some of the Project Options of the IDE (like those
related to the application object and the forms).

The structure of the program file is usually much simpler than the structure of the
units. Here is the source code of a sample program file (with some optional stan-
dard units omitted) that is automatically created by the IDE for you:

program Project1;

uses
 FMX.Forms,
 Unit1 in ‘Unit1.PAS’ {Form1};

begin
 Application.Initialize;
 Application.CreateForm (TForm1, Form1);
 Application.Run;
end.

As you can see, there is simply a uses section and the main code of the application,
enclosed by the begin and end keywords. The program’s uses statement is particu-
larly important, because it is used to manage the compilation and linking of the
application.

note The list of units in the program file corresponds to the list of the units that are part of the project
in the IDE Project Manager. When you add a unit to a project in the IDE, the unit is automatically
added to the list in the program file source. The opposite happens if you remove it from the
project. In any case, if you edit the source code of the program file, the list of units in the Project
Manager is updated accordingly.

Marco Cantù, Object Pascal Handbook

01: Coding in Pascal - 43

Compiler Directives

Another special element of the program structure (other than its actual code) are
compiler directives, as mentioned earlier. These are special instructions for the
compiler, written with the format:

{$X+}

Some compiler directives have a single character, as above, with a plus or minus
symbol indicating if the directive is activated or unactivated. Most of the directives
also have a longer and readable version, and use ON and OFF to mark if they are
active. Some directives have only the longer, descriptive format.

Compiler directives don't generate compiled code directly, but affect how the com-
piler generates code after the directive is encountered. In many cases, using a
compiler directive is an alternative to changing one of the compiler settings in the
IDE Project Options, although there are scenarios in which you want to apply a spe-
cific compiler setting only to a unit or to a fragment of code.

I'll cover specific compiler directives when relevant in the discussion of a language
feature they can affect. In this section I only want to mention a couple of directives
that relate to the program code flow: conditional defines and includes.

Conditional Defines

Conditional defines like $IFDEF let you indicate to the compiler to include a portion
of source code or ignore it. They can be based on defined symbols or on constant
values. The defined symbols can be predefined by the system (like the platform
symbols), can be defined in a specific project option, or a can be introduced with
another compiler directive, $DEFINE:

{$DEFINE TEST}
...
{$IFDEF TEST}
 // this is going to be compiled
{$ENDIF}

{$IFNDEF TEST}
 // this is not going to be compiled
{$ENDIF}

You can also have two alternatives, using an $ELSE directive to separate them. A
more flexible alternative is the use of the $IF directive, closed by the $IFEND direc-
tive and based on expressions like comparison functions (which can refer to any

Marco Cantù, Object Pascal Handbook

44 - 01: Coding in Pascal

constant value in the code). So you can just define a constant and use an expression
against it. An example is shown below related to compiler versions, one of the com-
mon uses of system defines.

Compiler Versions

Each version of the Delphi compiler has a specific define you can use to check if you
are compiling against a specific version of the product. This might be required if you
are using a feature introduced later but want to make sure the code still compiles for
older versions.

If you need to have specific code for some of the recent versions of Delphi, you can
base your $IFDEF statements on the following defines:

Delphi 2007 VER180

Delphi XE VER220

Delphi XE2 VER230

Delphi XE4 VER250

Delphi XE5 VER260

Appmethod Spring 2014 VER260

Delphi XE6 VER270

Appmethod June 2014 VER270

Delphi XE7 VER280

Appmethod September 2014 VER280

Delphi XE8 VER290

Appmethod Spring 2015 VER290

Delphi 2007 VER180

Delphi XE VER220

Delphi XE2 VER230

Marco Cantù, Object Pascal Handbook

01: Coding in Pascal - 45

Delphi XE4 VER250

Delphi XE5 VER260

Appmethod Spring 2014 VER260

Delphi XE6 VER270

Appmethod June 2014 VER270

Delphi XE7 VER280

Appmethod September 2014 VER280

Delphi XE8 VER290

Appmethod Spring 2015 VER290

Delphi 10 Seattle VER300

Delphi 10.1 Berlin VER310

The decimal digits of these version numbers indicate the actual compiler version
(for example 26 in Delphi XE5). The numeric sequence is not specific to Delphi, but
dates back to the first Turbo Pascal compiler published by Borland.

You can also use the internal versioning constant in $IF statements, with the advan-
tage of being able to use a comparison operator (>=) rather than a match for a
specific version. The versioning constant is called CompilerVersion and in Delphi
XE5 it's assigned to the floating-point value 26.0.

So for example:

{$IF CompilerVersion >= 26)}
 // code to compile in Delphi XE5 or later
{$IFEND}

Similarly, you can use system defines for the different platforms you can compile
for, in case you need some code to be platform-specific (generally an exception in
Object Pascal, not common practice):

Windows (both 32 and 64 bit) MSWINDOWS

Mac OS X MACOS

Marco Cantù, Object Pascal Handbook

46 - 01: Coding in Pascal

iOS IOS

Android ANDROID

Below is a code snippet with the tests based on the platforms define above, part of
the HelloPlatform project:

 {$IFDEF IOS}
 ShowMessage ('Running on iOS');
 {$ENDIF}

 {$IFDEF ANDROID}
 ShowMessage ('Running on Android');
 {$ENDIF}

Include Files

The other directive I want to cover here is the $INCLUDE directive, already men-
tioned when discussing the uses statement. This directive lets you refer to and
include a fragment of source code in a given position of a source code file. At times
this is used to be able to include the same fragment in different units, in cases where
the code fragment defines compiler directives and other elements used directly by
the compiler. When you use a unit, it is compiled only once. When you include a
file, that code is compiled within each of the units it is added to (which is why you
should generally avoid having any new identifier declared in an include file).

In other words, you should generally not add any language elements and definitions
in include files (unlike the C language), as this is what units are for. So how do you
use an include file? A good example is a set of compiler directives you want to
enable in most of your units, or some extra special defines.

Large libraries often use include files for that purpose, an example would be the
FireDAC library, a database library which is now part of the system libraries.
Another example, showcased by the system RTL units, is the use of individual
includes for each platform, with an $IFDEF used for conditionally including only one
of them.

Marco Cantù, Object Pascal Handbook

02: Variables and Data Types - 47

02: variables and

data types

Object Pascal is what is known as a strongly-typed language. Variables in Object
Pascal are declared to be of a data type (or user defined data type). The type of a
variable determines the values a variable can hold, and the operations that can be
performed on it. This allows the compiler both to identify errors in your code and
generate faster programs for you.

This is why the concept of type is stronger in Pascal than in languages like C or C++.
Later languages based on the same syntax but that break compatibility with C, like
C# and Java, divert from C and embrace Pascal's strong notion of data type. In C,
for example, arithmetic data types are almost interchangeable. By contrast the origi-
nal versions of BASIC, had no similar concept, and in many of today's scripting
languages (JavaScript being an obvious example) the notion of data type is very dif-
ferent.

note In fact, there are some tricks to bypass type safety, like using variant record types. The use of these
tricks is strongly discouraged and are little used today.

Marco Cantù, Object Pascal Handbook

48 - 02: Variables and Data Types

As I mentioned, all of the dynamic languages, from JavaScript onwards, don't have
the same notion of data type, or (at least) have a very loose idea of types. In some of
these languages the type is inferred by the value you assign to a variable, and the
variable type can change over time. What is important to point out is that data types
are a key element for enforcing correctness of a large application at compile-time,
rather than relying on run-time checks. Data types require more order and struc-
ture, and some planning of the code you are going to write... which clearly has
advantages and disadvantages.

note Needless to say I prefer strongly typed languages, but in any case my goal in this book is to explain
how the language works, more than to advocate why I think it is such a great programming lan-
guage. Though I'm sure you'll get that impression while you read the text.

Variables and Assignments

Like other strongly-typed languages, Object Pascal requires all variables to be
declared before they are used. Every time you declare a variable, you must specify a
data type. Here are some variable declarations:

var
 Value: Integer;
 IsCorrect: Boolean;
 A, B: Char;

The var keyword can be used in several places in a program, such as at the begin-
ning of a function or procedure, to declare variables local to that portion of the code,
or inside a unit to declare global variables.

note Differently from C and other curly-brace languages, in Object Pascal you cannot mix variable dec-
larations with programming statements, but you need to group them in specific sections (like at
the beginning of a method). Since this is not always handy, the IDE code editor let's you actually
type the var keyword followed by the actual declaration within your method or function code, but
it will immediately move it up to the correct position. This is one of the predefined Live Templates,
a very nice coding helper in the IDE that you can customize and extend.

After the var keyword comes a list of variable names, followed by a colon and the
name of the data type. You can write more than one variable name on a single line,
as A and B in the last statement of the previous code snippet (a coding style that is
less common today, compared to splitting the declaration on two separate lines).

Marco Cantù, Object Pascal Handbook

02: Variables and Data Types - 49

Once you have defined a variable of a given type, you can only perform the opera-
tions supported by its data type on it. For example, you can use the Boolean value in
a test and the integer value in a numerical expression. You cannot mix Booleans and
Integers, for example, or any incompatible data type (even if the internal represen-
tation might is physically compatible, as it is the case for Booleans and Integers).

The simplest assignment is that of an actual value, let's say you want the Value vari-
able to hold the value 10. But how do you express literal values? While this concept
might be obvious, it is worth looking into it with some detail.

Literal Values

A literal value is a value you type directly in the program source code. If you need a
number with the value of twenty, you can simply write:

20

There is also an alternative representation of the same numeric value, based on the
hexadecimal value, like:

$14

These will be literal values for an integer number (or one of the various integer
number types that are available). If you want the same numeric value, but for a
floating point literal value, you generally add an empty decimal after it:

2.0

Literal values are not limited to numbers. You can also have characters and strings.
Both use single quotes (were many other programming languages will use double
quotes for both, or single quotes for characters and double quotes for strings):

// literal characters
'K'
#55

// literal string
'Marco'

As you can see above, you can also indicate characters by their corresponding
numeric value (originally the ASCII number, now the Unicode code point value),
prefixing the number with the # symbol, as in #32 (for a space). This is useful
mostly for control characters without a textual representation in the source code,
like a backspace or a tab.

In case you need to have a quote within a string, you'll have to double it. So if I want
to have my first and last name (spelled with a final quote rather than an accent) I
can write:

Marco Cantù, Object Pascal Handbook

50 - 02: Variables and Data Types

'Marco Cantu'''

The two quotes stand for a quote within the string, while the third consecutive quote
marks the end of the string. Also note that a string literal must be written on a single
line, but you can concatenate multiple string literals using the + sign. If you want to
have the new line or line break within the string, don't write it on two lines, but con-
catenate the two elements with the sLineBreak system constant (which is platform
specific), as in:

'Marco' + sLineBreak + 'Cantu'''

Assignment Statements

Assignments in Object Pascal use the colon-equal operator (:=), an odd notation for
programmers who are used to other languages. The = operator, which is used for
assignments in many other languages, in Object Pascal is used to test for equality.

note The := operator comes from a Pascal predecessor, Algol, a language few of todays developers have
heard of (let even used). Most of today's languages avoid the := notation and favor the = assign-
ment notation.

By using different symbols for an assignment and an equality test, the Pascal com-
piler (like the C compiler) can translate source code faster, because it doesn't need
to examine the context in which the operator is used to determine its meaning. The
use of different operators also makes the code easier for people to read. Truly Pascal
picked two different operators than C (and syntactic derivatives like Java, C#,
JavaScript), which uses = for assignment and == for equality testing.

note For the sake of completeness I should mention JavaScript has also a === operator, but that's
something that even most JavaScript programmers get confused about.

The two elements of an assignment are often called lvalue and rvalue, for left value
(the variable or memory location you are assigning to) and right value, the value of
the expressions being assigned. While the rvalue can be an expression, the lvalue
must refer (directly or indirectly) to a memory location you can modify. There are
some data types that have specific assignment behaviors which I'll cover in due
time.

The other rule is that the type of the lvalue and of the rvalue must match, or there
must be an automatic conversion between the two, as explained in the next section.

Marco Cantù, Object Pascal Handbook

02: Variables and Data Types - 51

Assignments and Conversion

Using simple assignments, we can write the following code (that you can find
among many other snippets in this section in the VariablesTest project):

Value := 10;
Value := Value + 10;
IsCorrect := True;

Given the previous variable declarations, these three assignments are correct. The
next statement, instead, is not correct, as the two variables have different data
types:

Value := IsCorrect; // error

If you try to compile this code, the compiler issues an error with a description like
this:

[dcc32 Error]: E2010 Incompatible types: 'Integer' and 'Boolean'

The compiler informs you that there is something wrong in your code, namely two
incompatible data types. Of course, it is often possible to convert the value of a vari-
able from one type to another type. In some cases, the conversion is automatic, for
example if you assign an integer value to a floating point variable (but not the oppo-
site, of course). Usually you need to call a specific system function that changes the
internal representation of the data.

Initializing Global Variable

For global variables, you can assign an initial value as you declare the variable,
using the constant assignment notation covered below (=) instead of the assignment
operator (:=). For example, you can write:

var
 Value: Integer = 10;
 Correct: Boolean = True;

This initialization technique works only for global variables, which are initialized to
their default values anyway (like 0 for a number).

Variables declared at the beginning of a procedure or function, instead, are not ini-
tialized to a default value and don't have an assignment syntax. For those variables,
it is often worth adding explicit initialization code at the beginning of the code:

var
 Value: Integer;
begin
 Value := 0; // initialize

Marco Cantù, Object Pascal Handbook

52 - 02: Variables and Data Types

Again, if don't initialize a local variable but use it as it is, the variable will have a
totally random value (depending on the bytes that were present at that memory
location). In several scenarios, the compiler will warn you of the potential error, but
not always.

In other words, if you write:

var
 Value: Integer;
begin
 ShowMessage (Value.ToString); // X is indefined

The output will be a totally random value, whatever bytes happened to be at the
memory location of the Value variable considered as an Integer.

Constants

Object Pascal also allows the declaration of constants. This let's you to give mean-
ingful names to values that do not change during program execution (and possibly
reducing the size by not duplicating constant values in your compiled code).

To declare a constant you don't need to specify a data type, but only assign an initial
value. The compiler will look at the value and automatically infer the proper data
type. Here are some sample declarations (also from the VariablesTest application
project):

const
 Thousand = 1000;
 Pi = 3.14;
 AuthorName = 'Marco Cantu';

The compiler determines the constant data type based on its value. In the example
above, the Thousand constant is assumed to be of type SmallInt, the smallest inte-
gral type that can hold it. If you want to tell the compiler to use a specific type you
can simply add the type name to the declaration, as in:

const
 Thousand: Integer = 1000;

When you declare a constant, the compiler can choose whether to assign a memory
location to the constant and save its value there, or to duplicate the actual value
each time the constant is used. This second approach makes sense particularly for
simple constants.

Once you have declared a constant you can use it almost like any other variable, but
you cannot assign a new value to it. If you try, you'll get a compiler error.

Marco Cantù, Object Pascal Handbook

02: Variables and Data Types - 53

note Oddly enough, Object Pascal does allow you to change the value of a typed constant at run-time, as
if it was a variable but only if you enable the $J compiler directive, or use the corresponding
Assignable typed constants compiler option. This optional behavior is included for backward
compatibility of code which was written with an old compiler. This is clearly not a suggested cod-
ing style, and I've covered it in this note most as a historical anecdote about such programming
techniques.

Resource String Constants

Although this is a slightly more advanced topic, when you define a string constant,
instead of writing a standard constant declaration you can use a specific directive,
resourcestring, that indicates to the compiler and linker to treat the string like a
Windows resource (or an equivalent data structure on non-Windows platforms
Object Pascal supports):

const
 sAuthorName = 'Marco';

resourcestring
 strAuthorName = 'Marco';

begin
 ShowMessage (strAuthorname);

In both cases you are defining a constant; that is, a value you don't change during
program execution. The difference is only in the internal implementation. A string
constant defined with the resourcestring directive is stored in the resources of the
program, in a string table.

In short, the advantages of using resources are more efficient memory handling per-
formed by Windows, a corresponding implementation for other platforms, and a
better way of localizing a program (translating the strings to a different language)
without having to modify its source code. As a rule of thumb, you should use
resourcestring for any text that is shown to users and might need translating, and
internal constants for every other internal program string, like a fixed configuration
file name.

tip The IDE editor has an automatic refactoring you can use to replace a string constant in your code
with a corresponding resourcestring declaration. Place the edit cursor within a string literal and
press Ctrl+Shift+L to activate this refactoring.

Marco Cantù, Object Pascal Handbook

54 - 02: Variables and Data Types

Lifetime and Visibility of Variables

Depending on how you define a variable, it will use different memory locations and
remain available for a different amount of time (something generally called the vari-
able lifetime) and will be available in different portions of your code (a feature
referred to by the term visibility).

Now, we cannot have a complete description of all of the options so early in the
book, but we can certainly consider the most relevant cases:

● Global variables: If you declare a variable (or any other identifier) in the
interface portion of the unit, its scope extends to any other unit that uses the
one declaring it. The memory for this variable is allocated as soon as the
program starts and exists until it terminates. You can assign a default value
to it or use the initialization section of the unit in case the initial value is
computed in a more complex way.

● Global hidden variables: If you declare a variable in the implementation
portion of a unit, you cannot use it outside that unit, but you can use it in
any block of code and procedure defined within the unit, from the position
of the declaration onwards. Such a variable uses global memory and has the
same lifetime as the first group; the only difference is in its visibility. The
initialization is the same as that of global variable.

● Local variables: If you declare a variable within the block defining a func-
tion, procedure, or method, you cannot use this variable outside that block
of code. The scope of the identifier spans the whole function or method,
including nested routines (unless an identifier with the same name in the
nested routine hides the outer definition). The memory for this variable is
allocated on the stack when the program executes the routine defining it. As
soon as the routine terminates, the memory on the stack is automatically
released.

Any declarations in the interface portion of a unit are accessible from any part of the
program that includes the unit in its uses clause. Variables of form classes are
declared in the same way, so that you can refer to a form (and its public fields,
methods, properties, and components) from the code of any other form. Of course,
it’s poor programming practice to declare everything as global. Besides the obvious
memory consumption problems, using global variables makes a program harder to
maintain and update. In short, you should use the smallest possible number of
global variables.

Marco Cantù, Object Pascal Handbook

02: Variables and Data Types - 55

Data Types

In Pascal there are several predefined data types, which can be divided into three
groups: ordinal types, real types, and strings. We'll discuss ordinal and real types
in the following sections, while strings will be specifically covered in Chapter 6.

Delphi also includes a non-typed data type, called variant, and other “flexible”
types, such as TValue (part of the enhanced RTTI support). Some of these more
advanced data types will be discussed later in Chapter 5.

Ordinal and Numeric Types

Ordinal types are based on the concept of order or sequence. Not only can you com-
pare two values to see which is higher, but you can also ask for the next or previous
values of any value and compute the lowest and highest possible values the data
type can represent.

The three most important predefined ordinal types are Integer, Boolean, and Char
(character). However, there are other related types that have the same meaning but
a different internal representation and support a different range of values. The fol-
lowing table lists the ordinal data types used for representing numbers:

Size Signed Unsigned

8 bits ShortInt: -128 to 127 Byte: 0 to 255

16 bits
SmallInt: -32768 to 32767
(-32K to 32K)

Word: 0 to 65,535
(0 to 64K)

32 bits
Integer: -2,147,483,648 to
2,147,483,647 (-2GB to +2GB)

Cardinal: 0 to 4,294,967,295
(0 to 4 GB)

64 bits
Int64:
-9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

UInt64: 0 to
18,446,744,073,709,551,615
(if you can read it!)

As you can see, these types correspond to different representations of numbers,
depending on the number of bits used to express the value, and the presence or
absence of a sign bit. Signed values can be positive or negative, but have a smaller
range of values (half of the corresponding unsigned value), because one less bit is
available for storing the value itself.

Marco Cantù, Object Pascal Handbook

56 - 02: Variables and Data Types

The Int64 type represents integer numbers with up to 18 digits. This type is fully
supported by some of the ordinal type routines (such as High and Low), numeric
routines (such as Inc and Dec), and string-conversion routines (such as IntToStr) of
the run time library.

Aliased Integral Types

If you have a hard time remembering the difference between a ShortInt and a
SmallInt (including which one is effectively smaller), rather than the actual type
you can use one of the predefined aliases declared in the System unit:

type
 Int8 = ShortInt;
 Int16 = SmallInt;
 Int32 = Integer;
 UInt8 = Byte;
 UInt16 = Word;
 UInt32 = Cardinal;

Again, these types don't add anything new, but are probably easier to use, as it is
simple to remember the actual implementation of an Int16 rather than that of a
SmallInt. These type aliases are also easier to use for developers coming from C and
other languages that use similar type names.

Integer Type, 64 Bit, NativeInt, and LargeInt

In 64-bit versions of Object Pascal you may be surprised to learn that the Integer
type is still 32 bit. It is so because this is the most efficient type for numeric process-
ing.

It is the Pointer type (more about pointers later on) and other related reference
types that are 64 bit. If you need a numeric type that adapts to the pointer size and
the native CPU platform, you can use the two special NativeInt and NativeUInt
aliased types. These are 32 bit on 32-bit platform and 64 bit on 64-bit platforms.

A slightly different scenario happens for the LargeInt type, which is often used to
map to native platform API functions. This is 32 bit on 32-bit platforms and on
Windows 32 bit, while it is 64 bit on 64-bit ARM platform. Better stay away from it
unless you need it specifically for native code in a way it adapts to the underlying
operating system.

Integer Types Helpers

While the Integer types are treated separately from objects in the Object Pascal lan-
guage, it is possible to operate on variables (and constant values) of these types with

Marco Cantù, Object Pascal Handbook

02: Variables and Data Types - 57

operations that you apply using “dot notation”. This is the notation generally used to
apply methods to objects.

note Technically these operations on native data types are defined using “intrinsic record helpers”.
Class and record helpers are covered in Chapter 12. In short, you can customize the operations
applicable to core data types. Expert developers can notice that type operations are defined as
class static methods in the matching intrinsic record helper.

You can see a couple of examples in the following code extracted from the Inte-
gersTest demo:

var
 N: Integer;
begin
 N := 10;
 Show (N.ToString);

 // display a constant
 Show (33.ToString);

 // type operation, show the bytes required to store the type
 Show (Integer.Size.ToString);

note The Show function used in this code snippet is a simple procedure used to display some string out-
put in a memo control, to avoid having to close multiple ShowMessage dialogs. A side advantage is
this approach makes easier to copy the output and paste in the text (as I've done below). You'll see
this approach used through most of the demos of this book.

The output of the program is the following

10
33
4

Given these operations are very important (more than others that are part of the run
time library) it is worth listing them here:

ToString Convert to the number to a string, using a decimal format
ToBoolean Conversion to Boolean type
ToHexString Convert to a string, using a hexadecimal format
ToSingle Conversion to single floating point data type
ToDouble Conversion to double floating point data type
ToExtended Conversion to extended floating point data type

The first and third operations convert to the number to a string, using a decimal or
hexadecimal operation. The second is a conversion to Boolean, while the last three
are conversions to floating point types described later.

Marco Cantù, Object Pascal Handbook

58 - 02: Variables and Data Types

There are other operations you can apply to the Integer type (and most other
numerical types), such as:

Size The number of bytes required to store a variable of this type
Parse Convert a string to the numeric value it represents
TryParse Try to convert the string a a number

Standard Ordinal Types Routines

Beside the operations defined by Integer type helpers and listed above, there are
several standard and “classic” functions you can apply to any ordinal type (not just
the numeric ones). A classic example is asking for information about the type itself,
using the functions SizeOf, High, and Low. The result of the SizeOf system function
(that you can apply to any data type of the language) is an integer indicating the
number of bytes required to represent values of the given type (just like the Size
helper function shown above)

The system routines that work on ordinal types are shown in the following table:

Dec Decrements the variable passed as parameter, by one or by the value
of the optional second parameter

Inc Increments the variable passed as parameter, by one or by the speci-
fied value

Odd Returns True if the argument is an odd number. For testing for even
numbers, you should use a not expression (not Odd)

Pred Returns the value before the argument in the order determined by
the data type, the predecessor

Succ Returns the value after the argument, the successor
Ord Returns a number indicating the order of the argument within the

set of values of the data type (used for non-numerical ordinal types)
Low Returns the lowest value in the range of the ordinal type passed as

parameter
High Returns the highest value in the range of the ordinal data type

note C and C++ programmers should notice that the two versions of the Inc procedure, with one or
two parameters, correspond to the ++ and += operators (the same holds for the Dec procedure
which corresponds to the -- and -= operators). The Object Pascal compiler optimizes these incre-
ment and decrement operations, similarly to the way C and C++ compilers do.

Notice that some of these routines are automatically evaluated by the compiler and
replaced with their value. For example, if you call High(X) where X is defined as an
Integer, the compiler replaces the expression with the highest possible value of the
Integer data type.

Marco Cantù, Object Pascal Handbook

02: Variables and Data Types - 59

In the IntegersTest application project I've added an event with a few of these
ordinal type functions:

var
 n: UInt16;
begin
 n := Low (UInt16);
 Inc (n);
 Show (IntToStr (n));
 Inc (n, 10);
 Show (IntToStr (n));
 if Odd (n) then
 Show (IntToStr (n) + ' is odd');

This is the output you should see:

1
11
11 is odd

You can change the data type from Uint16 to Integer or other ordinal types to see
how the output changes.

Out-Of-Range Operations

A variable like n above has only a limited range of valid values. If the value you
assign to it is negative or too big, this results in an error. There are actually three
different types of errors you can encounter with out-of-range operations.

The first type of error is a compiler error, which happens if you assign a constant
value (or a constant expression) that is out of range. For example, if you add to the
code above:

 n := 100 + High (n);

the compiler will issue the error:

[dcc32 Error] E1012 Constant expression violates subrange bounds

The second scenario takes place when the compiler cannot anticipate the error con-
dition, because it depends on the program flow. Suppose we write (in the same
piece of code):

 Inc (n, High (n));
 Show (IntToStr (n));

The compiler won't trigger an error because there is a function call, and the com-
piler doesn't know its effect in advance (and the error would also depend on the
initial value of n). In this case there are two possibilities. By default, if you compile
and run this application, you'll end up with a completely illogical value in the vari-
able (in this case the operation will result in subtracting 1!). This is the worst
possible scenario, as you get no error, but your program is not correct.

Marco Cantù, Object Pascal Handbook

60 - 02: Variables and Data Types

What you can do (and it is highly suggested to do) is to turn on a compiler option
called “Overflow checking”, which will guard against a similar overflow operation
and raise an error, in this specific case “Integer overflow”. I've enabled this check in
the IntegersTest demo, so you'll see an error message when you run it.

Boolean

Logical True and False values are represented using the Boolean type. This is also
the type of the condition in conditional statements, as we'll see in the next chapter.
The Boolean type can only have one of the two possible values True and False.

note For compatibility with Microsoft's COM and OLE automation, the data types ByteBool, Word-
Bool, and LongBool represent the value True with -1, while the value False is still 0. Again, you
should generally ignore these types and avoid all low-level Boolean manipulation and numeric
mapping unless absolutely necessary.

Unlike in the C language and some of its derived languages, Boolean is an enumer-
ated type in Object Pascal, there is no direct conversion to the value representing
the Boolean, and you should not abuse direct type casts by trying to convert a Bool-
ean to a numeric value. It is true, however, that Boolean type helpers include the
functions ToInteger and ToString. I cover enumerated types later in this chapter.

Notice that using ToString returns the string with the numeric value of the Boolean
variable. As an alternative you can use the BoolToStr global function, setting the
second parameter to True, to indicate the use of Boolean strings ('True' and 'False')
for the output. (See the section “Char Type Operations” below for an example.)

Characters

Character variable are defined using the Char type. Unlike older versions, the lan-
guage today uses the Char type to represent double-byte Unicode characters.

note The Windows and Mac version of the compiler still offer the distinction between AnsiChar for one
byte ANSI characters and WideChar for Unicode ones, with the Char type defined as an alias of the
latter. The recommendation is to focus on WideChar, and use the Byte data type for single byte
elements.

Marco Cantù, Object Pascal Handbook

02: Variables and Data Types - 61

For an introduction to characters in Unicode, including the definition of a code
point and that of surrogate pairs (among other advanced topics) you can read Chap-
ter 6. In this section I'll just focus on the core concepts of the Char type.

As I mentioned earlier while covering literal values, constant characters can be rep-
resented with their symbolic notation, as in 'k', or with a numeric notation, as in
#78. The latter can also be expressed using the Chr system function, as in Chr (78).
The opposite conversion can be done with the Ord function. It is generally better to
use the symbolic notation when indicating letters, digits, or symbols.

When referring to special characters, like the control characters below #32, you'll
generally use the numeric notation. The following list includes some of the most
commonly used special characters:

#8 backspace
#9 tab
#10 newline
#13 carriage return
#27 escape

Char Type Operations

As other ordinal types, the Char type has several predefined operations you can
apply to variables of this type using the dot notation. These operations are defined
with an intrinsic record helper, again.

However, the usage scenario is quite different. First, to use this feature you need to
enable it by referring to the Character unit in a uses statement. Second, rather than
a few conversion functions, the helper for the Char type includes a couple of dozen
Unicode-specific operations, including tests like IsLetter, IsNumber, and IsPunctu-
ation, and conversions like ToUpper and ToLower. Here is an example taken from
the CharsTest application project:

uses
 Character;
...
var
 ch: Char;
begin
 ch := 'a';
 Show (BoolToStr(ch.IsLetter, True));
 Show (ch.ToUpper);

The output of this code is:

True
A

Marco Cantù, Object Pascal Handbook

62 - 02: Variables and Data Types

note The ToUpper operation of the Char type helper is fully Unicode enabled. This means that if you
pass an accented letter like ù the result will be Ù. Some of the traditional RTL functions are not so
smart and work only for plain ASCII characters.

Char as an Ordinal Type

The Char data type is quite large, but it is still an ordinal type, so you can use Inc
and Dec functions on it (to get to the next or previous character or move ahead by a
given number of elements, as we have seen in the section “Standard Ordinal Types
Routines”) and write for loops with a Char counter (more on for loops in the next
chapter).

Here is a simple fragment used to display a few characters, obtained by increasing
the value from a starting point:

var
 ch: Char;
 str1: string;
begin
 ch := 'a';
 Show (ch);
 Inc (ch, 100);
 Show (ch);

 str1 := '';
 for ch := #32 to #1024 do
 str1 := str1 + ch;
 Show (str1)

The for loop of the CharsTest application project adds a lot of text to the string,
making the output is quite long. It starts with the following lines of text:

a
Å
 !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abc
defghijklmnopqrstuvwxyz{|}~
// few more lines omitted...

Converting with Chr

We have seen that there is an Ord function that returns the numeric value (or Uni-
code code point) of a character. There is also an opposite function you can to get the
character corresponding to a code point, that is the Chr special function.

Marco Cantù, Object Pascal Handbook

02: Variables and Data Types - 63

32-bit Characters

Although the default Char type is now mapped to WideChar, it is worth noticing
that Delphi also defines a 4-byte character type, UCS4Char, defined in the System
unit as:

type
 UCS4Char = type LongWord;

This type definition and the corresponding one for UCS4String (defined as an array
of UCS4Char) are little used, but they are part of the language runtime and used in
some of the functions of the Character unit.

Floating Point Types

While integer numbers of various kinds can be represented with an ordinal set of
values, floating point numbers are not ordinal (they have the concept of order, but
not the concept of a sequence of elements) and represented by some approximate
value, with some error in their representation.

Floating-point numbers comes in various formats, depending on the number of
bytes used to represent them and the quality of the approximation. Here is a list of
floating-point data types in Object Pascal:

Single The smallest storage size is given by Single numbers, which are
implemented with a 4-byte value. The name indicates a single preci-
sion floating point value and the same type is indicated with the
name float in other languages.

Double These are floating-point numbers implemented with 8 bytes. The
name indicates a double precision floating point value and is shared
by many languages. The Double precision is the most commonly
used floating point data type and is also an alias of an older Pascal
type called Real.

Extended These are numbers implemented with 10 bytes, but this type is not
available on all platforms (on some, like Win64, it reverts back to
Double, while on Mac OS X it is 16 bytes). Other languages
call this data type long double.

These are all floating-point data types with different precision, which correspond to
the IEEE standard floating-point representations, and are directly supported by the
CPU (or, to be precise, by the FPU, the floating point unit), for maximum speed.

There are also two peculiar non-ordinal numeric data types you can used to repre-
sent numbers with a precise, not an approximate representation:

Marco Cantù, Object Pascal Handbook

64 - 02: Variables and Data Types

Comp Describes very big integers using 8 bytes (which can hold numbers
with 18 decimal digits). The idea is to represent large numbers with
no loss of precision, unlike the corresponding floating point values.

Currency Indicates a fixed-point decimal value with four decimal digits, and
the same 64-bit representation as the Comp type. As the name
implies, the Currency data type has been added to handle very pre-
cise monetary values, with four decimal places (again with no loss of
precision in calculations).

All of these non-ordinal data types don't have the concepts of the High, Low, or Ord
function. Real types represent (in theory) an infinite set of numbers; ordinal types
represent a fixed set of values.

Why Floating Point Values are Different

Let me explain further. When you have the integer 23 you can determine which is
the following value. Integers are finite (they have a determined range and they have
an order). Floating point numbers are infinite even within a small range, and have
no order: in fact, how many values are there between 23 and 24? And which num-
ber follows 23.46? Is it 23.47, 23.461, or 23.4601? That's really impossible to know!

For this reason, whilst it makes sense to ask for the ordinal position of the character
'w' in the range of the Char data type, it makes no sense at all to ask the same ques-
tion about 7143.1562 in the range of a floating-point data type. Although you can
indeed know whether one real number has a higher value than another, it makes no
sense to ask how many real numbers exist before a given number (this is the mean-
ing of the Ord function).

Another key concept behind floating point values is that their implementation can-
not represent all numbers precisely. It is often the case that the result of a
calculation you'd expect to be a specific number (at times an integer one), could in
fact be an approximate value of it. Consider this code, taken from the FloatTest
application project:

var
 s1: Single;
begin
 s1 := 0.5 * 0.2;
 Show (s1.ToString);

You would expect the result to be 0.1, while in fact you'd get something like
0.100000001490116. This is close to the expected value, but not exactly it. Needless
to say, if you round the result, you'll get the expected value. If you use a Double vari-
able, instead, the output will be 0.1, as the FloatTest application project also
shows.

Marco Cantù, Object Pascal Handbook

02: Variables and Data Types - 65

note Now I don't have time for an in-depth discussion of floating point math on computers, so I'm cut-
ting this discussion rather short, but if you are interested in this topic from the Object Pascal
language perspective, I can recommend you an excellent article from Rudy Velthuis at
http://rvelthuis.de/articles/articles-floats.html.

Floating Helpers and the Math Unit

As you can see from the code snippet above, the floating point data types also have
record helpers allowing you to apply operations directly to the variables, as if they
were objects. In fact, the list of operations for floating point numbers is actually
quite long.

This is the list of operations on instances for the Single type (with most operations
quite obvious from their names, so I've omitted a description):

Exponent Fraction Mantissa
Sign Exp Frac
SpecialType BuildUp ToString
IsNan IsInfinity IsNegativeInfinity
IsPositiveInfinity Bytes Words

The run time library also has a Math unit that defines advanced mathematical rou-
tines, covering trigonometric functions (such as the ArcCosh function), finance
(such as the InterestPayment function), and statistics (such as the MeanAndStdDev
procedure). There are a number of these routines, some of which sound quite
strange to me, such as the MomentSkewKurtosis function (I'll let you find out what
this is).

The Math unit is very rich in capabilities, but you'll also find many external collec-
tions of mathematical functions for Object Pascal.

Simple User-Defined Data Types

Along with the notion of type, one of the great ideas introduced by Wirth in the Pas-
cal language was the ability to define new data types in a program. You can define
your own data types by means of type definitions, such as subrange types, array
types, record types, enumerated types, pointer types, and set types. The most
important user-defined data type is the class, which is part of the object-oriented
capabilities of the language, covered in the second part of this book.

If you think that type constructors are common in many programming languages,
you are right, but Pascal was the first language to introduce the idea in a formal and

Marco Cantù, Object Pascal Handbook

66 - 02: Variables and Data Types

very precise way. Object Pascal still has some rather unique capabilities, like the
definition of subrange, enumerations, and sets, covered in the following sections.
More complex data type constructors (like arrays and records) are covered in Chap-
ter 5.

Named vs. Unnamed Types

User-defined data types can be given a name for later use or applied to a variable
directly. The convention in Object Pascal is to use a letter T prefix to denote any data
type, including classes but not limited to them. I strongly suggest you to stick to this
rule, even if might not feel natural at first if you are coming from a Java or C# back-
ground.

When you give a name to a type, you must do so in a “type” section of your program
(you can add as many types as you want in each unit). Below is a simple example of
a few type declarations:

type
 // subrange definition
 TUppercase = 'A'..'Z';

 // enumerated type definition
 TMyColor = (Red, Yellow, Green, Cyan, Blue, Violet);

 // set definition
 TColorPalette = set of TMyColor;

With these types, you can now define some variables:

var
 UpSet: TUpperLetters;
 Color1: TMyColor;

In the scenario above I'm using a named type. As an alternative, the type definition
can be used directly to define a variable without an explicit type name, as in the fol-
lowing code:

var
 Palette: set of TMyColor;

In general, you should avoid using unnamed types as in the code above, because you
cannot pass them as parameters to routines or declare other variables of the same
type. Given the language ultimately resorts to type name equivalence rather than
structural type equivalence, having a single definition for each type is indeed impor-
tant. Also remember that type definitions in the interface portion of a unit can be
seen in the code of any other units by means of a uses statement.

Marco Cantù, Object Pascal Handbook

02: Variables and Data Types - 67

What do the type definitions above mean? I’ll provide some descriptions for those
who are not familiar with traditional Pascal type constructs. I’ll also try to underline
the differences from the same constructs in other programming languages, so you
might be interested in reading the following sections in any case.

Subrange Types

A subrange type defines a range of values within the range of another type (hence
the name subrange).

For example, you can define a subrange of the Integer type, from 1 to 10 or from
100 to 1000, or you can define a subrange of the Char type with English uppercase
characters only, as in:

type
 TTen = 1..10;
 TOverHundred = 100..1000;
 TUppercase = 'A'..'Z';

In the definition of a subrange, you don’t need to specify the name of the base type.
You just need to supply two constants of that type. The original type must be an
ordinal type, and the resulting type will be another ordinal type. When you have
defined a variable as a subrange, you can then assign it any value within that range.
This code is valid:

var
 UppLetter: TUpperCase;

begin
 UppLetter := 'F';

But this is not:

var
 UppLetter: TUpperCase;

begin
 UppLetter := 'e'; // compile-time error

Writing the code above results in a compile-time error, "Constant expression vio-
lates subrange bounds." If you write the following code instead:

var
 UppLetter: TUppercase;
 Letter: Char;

begin
 Letter :='e';
 UppLetter := Letter;

Marco Cantù, Object Pascal Handbook

68 - 02: Variables and Data Types

the compiler will accept it. At run-time, if you have enabled the Range Checking
compiler option (in the Compiler page of the Project Options dialog box), you’ll get a
Range check error message, as expected. This is similar to the integer type overflow
errors which I described earlier.

I suggest that you turn on this compiler option while you are developing a program,
so it'll be more robust and easier to debug, as in case of errors you'll get an explicit
message and not an undetermined behavior. You can eventually disable this option
for the final build of the program, so that it will run a little faster. However, the
increase in speed is almost negligible so I suggest to leave all of these run-time
checks turned on, even in a shipping program.

Enumerated Types

Enumerated types (usually referred to as “enums”) constitute another user-defined
ordinal type. Instead of indicating a range of an existing type, in an enumeration
you list all of the possible values for the type. In other words, an enumeration is a
list of (constant) values. Here are some examples:

type
 TColors = (Red, Yellow, Green, Cyan, Blue, Violet);
 TSuit = (Club, Diamond, Heart, Spade);

Each value in the list has an associated ordinality, starting with zero. When you
apply the Ord function to a value of an enumerated type, you get this “zero-based”
value. For example, Ord (Diamond) returns 1.

Enumerated types can have different internal representations. By default, Delphi
uses an 8-bit representation, unless there are more than 256 different values, in
which case it uses the 16-bit representation. There is also a 32-bit representation,
which at times is useful for compatibility with C or C++ libraries.

note You can change the default representation of enumerated types, asking for a larger one, by using
the $Z compiler directive.

Scoped Enumerators

The specific constant values of an enumerated type can be considered to all effects
as global constants, and there have been cases of names conflicts among different
enumerated values. This is why the language supports scoped enumerations, a fea-
ture you can activate using a specific compiler directive, $SCOPEDENUMS, and which
requires you to refer to the enumerated value using the type name as a prefix:

Marco Cantù, Object Pascal Handbook

02: Variables and Data Types - 69

// classic enumerated value
s1 := Club;

// "scoped" enumerated value
s1 := TSuit.Club;

note This is exactly how C# invariably works, but in that language enumerations have a slightly differ-
ent behavior, can have holes in the sequence and have specific values assigned to the various
constants.

When this feature was introduced, the default remained the traditional behavior, to
avoid breaking existing code. Scoped enumerators, in fact, changes the behavior of
enumerations making it compulsory to refer to them with a type prefix.

Having an absolute name to refer to enumerated values removes the risk of a con-
flict, could let you avoid using the initial prefix of the enumerated values as a way to
differentiate with other enumerations, and makes the code more readable, even if
much longer to write.

As an example, the System.IOUtils unit defines this type:

{$SCOPEDENUMS ON}
type
 TSearchOption = (soTopDirectoryOnly, soAllDirectories);

This means you cannot refer to the second value as soAllDirectories, but you have
to refer to the it with its complete name:

TSearchOption.soAllDirectories

The FM Platform library uses quite a number of scoped enumerators, as well,
requiring the type as a prefix to the actual values.

note Enumerated values in Object Pascal libraries often use two or three initials of the type at the
beginning of the value, like “so” for Search Options in the example above. When using the type as
a prefix, this might seem a bit redundant, but given the commonality of the approach, I don't see it
going away any time soon.

Set Types

Set types indicate a group of values, where the list of available values is indicated by
the ordinal type the set is based onto. These ordinal types are usually limited, and
quite often represented by an enumeration or a subrange.

Marco Cantù, Object Pascal Handbook

70 - 02: Variables and Data Types

If we take the subrange 1..3, the possible values of the set based on it include only 1,
only 2, only 3, both 1 and 2, both 1 and 3, both 2 and 3, all the three values, or none
of them.

A variable usually holds one of the possible values of the range of its type. A set-type
variable, instead, can contain none, one, two, three, or more values of the range. It
can even include all of the values.

Here is an example of a set:

type
 TSuit = (Club, Diamond, Heart, Spade);
 TSuits = set of TSuit;

Now I can define a variable of this type and assign to it some values of the original
type. To indicate some values in a set, you write a comma-separated list, enclosed
within square brackets. The following code shows the assignment to a variable of
several values, a single value, and an empty value:

var
 Cards1, Cards2, Cards3: TSuits;

begin
 Cards1 := [Club, Diamond, Heart];
 Cards2 := [Diamond];
 Cards3 := [];

In Object Pascal, a set is generally used to indicate several nonexclusive flags. For
example a value based on a set type is the style of a font. Possible values indicate a
bold, italic, underline, and strike-through font. Of course the same font can be both
italic and bold, have no attributes, or have them all. For this reason it is declared as
a set. You can assign values to this set in the code of a program as follows:

Font.Style := []; // no style
Font.Style := [fsBold]; // bold style only
Font.Style := [fsBold, fsItalic]; // two styles active

Set Operators

We have seen that sets are a very Pascal-specific user defined data type. That's why
the set operators are worth a specific coverage. They include union (+), difference
(-), intersection (*), membership test (in), plus some relational operators.

To add an element to a set, you can make the union of the set with another one that
has only the elements you need. Here's an example related to font styles:

// add bold
Style := Style + [fsBold];

// add bold and italic, but remove underline if present
Style := Style + [fsBold, fsItalic] - [fsUnderline];

Marco Cantù, Object Pascal Handbook

02: Variables and Data Types - 71

As an alternative, you can use the standard Include and Exclude procedures, which
are much more efficient (but cannot be used with component properties of the set
type):

Include (Style, fsBold);
Exclude (Style, fsItalic);

Expressions and Operators

We have seen that you can assign to a variable a type-compatible literal value, a con-
stant value, or the value of another variable. In many cases, what you assign to a
variable is the result of an expression, involving one or more values and one or more
operators. Expressions are another core element of the language.

Using Operators

There isn't a general rule for building expressions, since they mainly depend on the
operators being used, and Object Pascal has a number of operators. There are logi-
cal, arithmetic, Boolean, relational, and set operators, plus some other special ones:

// sample expressions
20 * 5 // multiplication
30 + n // addition
a < b // less than comparison
- 4 // negative value
c = 10 // test for equality (like == in C syntax)

Expressions are common to most programming languages, and most operators are
the same. An expression is any valid combination of constants, variables, literal val-
ues, operators, and function results. Expressions can be used to determine the value
to assign to a variable, to compute the parameter of a function or procedure, or to
test for a condition. Every time you are performing an operation on the value of an
identifier, rather than using an identifier by itself, you are using an expression.

note The result of an expression is generally stored in a temporary variable of the proper data type
automatically generated by the compiler on your behalf. You might want to use an explicit variable
when you need to compute the same expression more than once in the same code fragment.
Notice that complex expressions might require multiple temporary variables to store intermediate
results, again something the compiler takes care of for you and you can generally ignore.

Marco Cantù, Object Pascal Handbook

72 - 02: Variables and Data Types

Showing the Result of an Expression

If you want to make a few experiments with expressions, there is nothing better
than writing a simple program. As for most of the initial demos of this book, create a
simple program based on a form, and use the custom Show function to display some-
thing to the user. In case the information you want to show is a not a string message
but number or a boolean logical value, you need to convert it, for example calling
the IntToStr or BoolToStr function.

note In Object Pascal parameters passed to a function or procedures are enclosed in parenthesis. Some
other languages (notably Rebol and, to some extent, Ruby) let you pass parameters simply by writ-
ing them after the function or procedure name. Getting back to Object Pascal, nested functions
calls use nested parenthesis, like in the code below.

Here is a sample code snippet from the ExpressionsTest application project:

 Show (IntToStr (20 * 5));
 Show (IntToStr (30 + 222));
 Show (BoolToStr (3 < 30, True));
 Show (BoolToStr (12 = 10, True));

The output is this code snippet is quite trivial:

100
252
True
False

I've provided this demo as a skeleton for you to try out different types of expressions
and operators, and see the corresponding output.

note Expressions you write in Object Pascal are parsed by the compiler and generate assembly code. If
you want to change one of these expressions, you need to change the source code and recompile
the application. The system libraries, however, have support for dynamic expressions calculated at
runtime, a feature tied to reflection and covered in Chapter 16.

Operators and Precedence

Expressions are made of operators applied to values. As I mentioned, most opera-
tors are shared among the various programming languages are are quite intuitive,
such as the basic match and comparison operators. In this section I'll highlight only
specific elements of Object Pascal operators.

Marco Cantù, Object Pascal Handbook

02: Variables and Data Types - 73

You can see a list of the operators of the language below, grouped by precedence
and compared to operators in C#, Java, and Objective-C (and most languages based
on the C language syntax, anyway).

Relational and Comparison Operators (Lowest Precedence)

= Test whether equal (in C this is ==)
<> Test whether not equal (in C this is !=)
< Test whether less than
> Test whether greater than
<= Test whether less than or equal to, or a subset of a set
>= Test whether greater than or equal to, or a superset of a set
in Test whether the item is a member of the set
is Test whether an object is compatible with a given type (covered in

Chapter 8) or implements a given interface (covered in Chapter 11)

Additive Operators

+ Arithmetic addition, set union, string concatenation, pointer offset
addition

- Arithmetic subtraction, set difference, pointer offset subtraction
or Boolean or bitwise or (in C this is either || or |)
xor Boolean or bitwise exclusive or (in C bitwise exclusive or is ^)

Multiplicative and Bitwise Operators

* Arithmetic multiplication or set intersection
/ Floating-point division
div Integer division (in C this also uses /)
mod Modulo (the remainder an of integer division) (in C this is %)
as Allows a type-checked conversion at runtime (covered in Chapter 8)
and Boolean or bitwise and (in C this is either && or &)
shl Bitwise left shift (in C this is <<)
shr Bitwise right shift (in C this is >>)

Unary Operators (Highest Precedence)

@ Memory address of a variable or function (returns a pointer, in C
this is &)

not Boolean or bitwise not (in C this is !)

Different from many other programming languages, the and and or operators have
higher precedence than comparison ones. So if you write:

a < b and c < d

Marco Cantù, Object Pascal Handbook

74 - 02: Variables and Data Types

the compiler will do the and operation first, generally resulting in a compiler error.
If you want to test both comparisons, you should enclose each of the < expressions
in parentheses:

(a < b) and (c < d)

For math operations, instead, the common rules apply, with multiplication and divi-
sion taking precedence over addition and subtraction. The first two expressions
below are equivalent, while the third is different:

10 + 2 * 5 // result is 20
10 + (2 * 5) // result is 20
(10 + 2) * 5 // result is 60

Some of the operators have different meanings when used with different data types.
For example, the + operator can be used to add two numbers, concatenate two
strings, make the union of two sets, and even add an offset to a pointer (if the spe-
cific pointer type has pointer math enabled):

10 + 2 + 11
10.3 + 3.4
'Hello' + ' ' + 'world'

However, you cannot add two characters, as is possible in C.

An unusual operator is div. In Object Pascal, you can divide any two numbers (real
or integers) with the / operator, and you'll invariably get a real-number result. If
you need to divide two integers and want an integer result, use the div operator
instead. Here are two sample assignments (this code will become clearer as we
cover data types in the next chapter):

realValue := 123 / 12;
integerValue := 123 div 12;

To make sure the integral division has no remainder, you can use the mod operator
and check if the result is zero, like in the following Boolean expression:

(x mod 12) = 0

Date and Time

While there was no native type for date and time in the early versions of the Pascal
language, Object Pascal has a native type for date and time. It uses a floating-point
representation to handle date and time information. To be more precise the System
unit defines a specific TDateTime data type for that purpose.

Marco Cantù, Object Pascal Handbook

02: Variables and Data Types - 75

This is a floating-point type, because it must be wide enough to store years, months,
days, hours, minutes, and seconds, down to millisecond resolution in a single vari-
able:

· Dates are stored as the number of days since 1899-12-30 (with negative values
indicating dates before 1899) in the integer part of the TDateTime value

· Times are stored as fractions of a day in the decimal part of the value

note In case you are wondering where that strange date comes from, there is a rather long story behind
it, tied to Excel and dates representations in Windows applications. The idea was to consider day
number 1 as the first of January 1900, so that New Year's eve of 1899 would have been day num-
ber 0. However, the original developer of that date representation duly forgot that year 1900
wasn't a leap year, and so calculations were later adjusted by 1 day, turning the first of January
1900 into day number 2.

As mentioned, TDateTime is not a predefined type the compiler understands, but it
is defined in the System unit as:

type
 TDateTime = type Double;

note The System unit could be somehow considered almost as part of the core language, given it is
always automatically included in each compilation, without a uses statement (actually adding the
System unit to a uses section will cause a compilation error). Technically, though, this unit is con-
sidered as the core part of the run-time library (RTL), and it will be covered in Chapter 17.

There are also two related types to handle the time and date portions of a TDateTime
structure, defined as TDate and TTime. These specific types are aliases of the full
TDateTime, but they are treated by system functions trimming the unused part of
the data.

Using date and time data types is quite easy, because Delphi includes a number of
functions that operate on this type. There are several core functions in the Sys-
tem.SysUtils unit, and many specific functions in the System.DateUtils unit
(which despite the name includes also functions for manipulating time).

Here you can find a short list of commonly used date/time manipulation functions:

Now Returns the current date and time into a date/time value.
Date Returns only the current date.
Time Returns only the current time.
DateTimeToStrConverts a date and time value into a string, using default format-

ting; to have more control on the conversion use the
FormatDateTime function instead.

DateToStr Converts the date portion of a date/time value into a string.

Marco Cantù, Object Pascal Handbook

76 - 02: Variables and Data Types

TimeToStr Converts the time portion of a date/time value into a string.
FormatDateTime Formats a date and time using the specified format; you can spec-

ify which values you want to see and which format to use by
providing a complex format string.

StrToDateTimeConverts a string with date and time information to a date/time
value, raising an exception in case of an error in the format of the
string. Its companion function, StrToDateTimeDef returns the
default value in case of an error rather than raising an exception.

DayOfWeek Returns the number corresponding to the day of the week of the
date/time value passed as parameter.

DecodeDate Retrieves the year, month, and day values from a date value.
DecodeTime Retrieves the hours, minutes, seconds, and milliseconds from a date

value.
EncodeDate Turns year, month, and day values into a date/time value.
EncodeTime Turns hour, minute, second, and millisecond values into a date/time

value.

To show you how to use this data type and some of its related routines, I've built a
simple application project, named TimeNow. When the program starts it automati-
cally computes and displays the current time and date.

var
 StartTime: TDateTime;
begin
 StartTime := Now;
 Show ('Time is ' + TimeToStr (StartTime));
 Show ('Date is ' + DateToStr (StartTime));

The first statement is a call to the Now function, which returns the current date and
time. This value is stored in the StartTime variable.

note When an Object Pascal function is called with no parameters there is no need to type the empty
parentheses unlike with the C style languages.

The next two statements display the time portion of the TDateTime value, converted
into a string, and the date portion of the same value. This is the output of the pro-
gram:

Time is 6:33:14 PM
Date is 10/7/2014

To compile this program you need to refer to functions that are part of the unit Sys-
tem.SysUtils (a short name for “system utilities”). Besides calling TimeToStr and
DateToStr you can use the more powerful FormatDateTime function.

Marco Cantù, Object Pascal Handbook

02: Variables and Data Types - 77

Notice that time and date values are transformed into strings depending on the sys-
tem's international settings. The date and time formatting information is read from
the system, depending on the operating system and the locale, populating a TFor-
matSettings data structure. If you need customized formatting, you can create a
custom structure of that type and pass it as parameter to most date time formatting
functions.

note The TimeNow project has also a second button you can use to enable a timer. This is a component
that executes an event handler automatically over time (you specify the interval). In the demo, if
you enable the timer you'll see the current time added to the list every second. A more useful user
interface would be to update a label with the current time every second, basically building a clock.

Typecasting and Type Conversions

As we have seen, you cannot assign a variable of one data type to one of a different
type. The reason is, depending on the actual representation of the data, you might
end up with something meaningless.

Now, this is not true for each and every data type. Numerical types, for example, can
always be promoted safely. “Promoted” here means you can always safely assign a
value to a type with a larger representation. So you can assign a word to an integer,
and an integer to an Int64 value. The opposite operation, called “demotion”, is
allowed by the compiler but it will issue a warning, because you might end up with
partial data. Other automatic conversions are one way only: For example, you can
assign an integer to a floating point number, but the opposite operation is illegal.

There are scenarios you want to change the type of a value and the operation makes
sense. When you need to do this, there are two choices. One is to perform a direct
type cast, which will copy the physical data and might result in a proper conversion
or a not depending on the types. When you perform a typecast, you are telling the
compiler “I know what I'm doing, let me go for it”. So, better if you really know what
you are doing, as you are losing the compiler safety net.

Type casting uses a simple functional notation, with the name of the destination
data type used as a function:

var
 N: Integer;
 C: Char;
 B: Boolean;

begin

Marco Cantù, Object Pascal Handbook

78 - 02: Variables and Data Types

 N := Integer ('X');
 C := Char (N);
 B := Boolean (N);

You can safely typecast between data types having the same size (that is the same
number of bytes to represent the data – unlike in the code snippet above!). It is usu-
ally safe to typecast between ordinal types, but you can also typecast between
pointer types (and also objects) as long as you know what you are doing.

Direct type casting is a dangerous programming practice, because it allows you to
access a value as if it represented something else. Since the internal representations
of data types generally do not match (and might even change depending on the tar-
get platform), you risk accidentally creating hard-to-track errors. For this reason,
you should generally avoid type casting.

The second choice to assign a variable to one of a different type is to use a type con-
version function. A list of functions allowing you to convert between various basic
types is summarized below (and I've already used some of these functions in the
demos of this chapter):

Chr Converts an ordinal number into a character.
Ord Converts an ordinal-type value into the number indicating its order.
Round Converts a real-type value into an Integer-type value, rounding its

value (also see the following note).
Trunc Converts a real-type value into an Integer-type value, truncating its

value.
Int Returns the Integer part of the floating-point value argument.
FloatToDecimal Converts a floating-point value to record including its decimal rep-

resentation (exponent, digits, sign).
FloatToStr Converts a floating-point value to its string representation using

default formatting.
StrToFloat Converts a string to a floating-point value.

note The implementation of the Round function is based on the native implementation offered by the
CPU. Moderns processors generally adopts the so-called "Banker's Rounding", which rounds mid-
dle values (such as 5.5 or 6.5) up and down depending whether they follow an odd or an even
number. There are other rounding functions, such as RoundTo, that offer you more control on the
actual operation.

As mentioned earlier in this chapter, some of these conversion functions are also
available as direct operations on the data type (thanks to the type helper mecha-
nism). While there are classic conversions like IntToStr, you can apply the
ToString operation to most numeric types to convert them to a string representa-

Marco Cantù, Object Pascal Handbook

02: Variables and Data Types - 79

tion. There are many conversions you can apply directly to variables using type
helpers, and that should be your preferred coding style.

Some of these routines work on the data types that we'll discuss in the following sec-
tions. Notice that the table doesn't include routines for special types (such as
TDateTime or variant) or routines specifically intended for formatting more than
conversion, like the powerful Format and FormatFloat routines.

Marco Cantù, Object Pascal Handbook

80 - 02: Variables and Data Types

Marco Cantù, Object Pascal Handbook

03: Language Statements - 81

03: language

statements

If the concept of data type was one of the breakthrough of the Pascal programming
language when it was first invented, the other side is represented by the code or
programming statements. At that time, this idea was clarified by Nicklaus Wirth's
outstanding book “Algorithms + Data Structures = Programs”, published by Pren-
tice Hall in February 1976 (a classic book, still reprinted and available). While this
book predates object-oriented programming by many years, it can be considered
one of the foundations of modern programming, based on a strong notion of data
type, and in this way a foundation of the concepts that lead to object-oriented pro-
gramming languages.

Statements of the programming language are based on keywords (covered in Chap-
ter 1) and other elements which allow you to indicate to a compiler a sequence of
operations to perform. Statements are often enclosed in procedures or functions, as
we'll start to see in more detail in the next chapter. For now, we'll just focus on the
basic types of instructions you can write to create a program.

As we saw in Chapter 1 (in the section covering white space and code formatting),
the actual program code can be written quite freely. I also covered comments and

Marco Cantù, Object Pascal Handbook

82 - 03: Language Statements

some other special elements, but never fully introduced some core concepts, like a
programming statement.

Simple and Compound Statements

Programming instructions are generally called statements. A program block can be
made of a several statements. There are two types of statements, simple and com-
pound.

A statement is called simple when it doesn't contain any other sub-statements.
Examples of simple statements are assignment statements and procedure calls. In
Object Pascal simple statements are separated by a semicolon:

X := Y + Z; // assignment
Randomize; // procedure call
...

To define a compound statement, you can include one of more statements within
the keywords begin and end, which act as brackets. A compound statement can
appear anywhere a simple Object Pascal statement can appear. Here is an example:

begin
 A := B;
 C := A * 2;
end;

The semicolon after the last statement of the compound statement (that is, before
the end) isn't required, as in the following:

begin
 A := B;
 C := A * 2
end;

Both versions are correct. The first version has a useless (but harmless) final semi-
colon. This semicolon is, in fact, a null statement or an empty statement; that is, a
statement with no code. This is significantly different from many other program-
ming languages (like those based on the C syntax), in which the semicolon is a
statement terminator (not a separator) and is always required at the end of a state-
ment.

Notice that, at times, a null statement can be specifically used inside loops or in
other particular cases in place of an actual statement, as in:

while condition_with_side_effect do
 ; // null or empty statement

Marco Cantù, Object Pascal Handbook

03: Language Statements - 83

Although these final semicolons serve no purpose, most developers tend to use
them and I suggest you to do the same. Sometimes after you've written a couple of
lines you might want to add one more statement. If the last semicolon is missing
you have to remember to add it, so it is usually better to add it in the first place. As
we'll see right away, there is an exception to this rule of adding extra semicolons,
and that is when the next element is an else statement inside a condition.

The If Statement

A conditional statement is used to execute either one of the statements it contains or
none of them, depending on a specific test (or condition). There are two basic fla-
vors of conditional statements: if statements and case statements.

The if statement can be used to execute a statement only if a certain condition is
met (if-then) or to choose between two different alternatives (if-then-else). The
condition is defined with a Boolean expression.

A simple Object Pascal example, called IfTest, will demonstrate how to write condi-
tional statements. In this program we'll use a checkbox to get user input, by reading
its IsChecked property (and storing it to a temporary variable, although this isn't
strictly required, as you could directly check the property value in the conditional
expression):

var
 isChecked: Boolean;
begin
 isChecked := CheckBox1.IsChecked;
 if isChecked then
 Show ('Checkbox is checked');

If the checkbox is checked, the program will show a simple message. Otherwise
nothing happens. By comparison, the same statement using the C language syntax
will look like the following (where the conditional expression must be enclosed
within parentheses):

if (isChecked)
 Show ("Checkbox is checked");

Some other languages have the notion of an endif element to allow you to write
multiple statements, where in Object Pascal syntax the conditional statement is a
single statement by default. You use a begin-end block to execute more than one
statement as part of the same condition.

Marco Cantù, Object Pascal Handbook

84 - 03: Language Statements

If you want to do different operations depending on the condition, you can use an
if-then-else statement (and in this case I used a direct expression to read the
checkbox status):

 // if-then-else statement
 if CheckBox1.IsChecked then
 Show ('Checkbox is checked')
 else
 Show ('Checkbox is not checked');

Notice that you cannot have a semicolon after the first statement and before the
else keyword or the compiler will issue a syntax error. The reason is that the if-
then-else statement is a single statement, so you cannot place a semicolon in the
middle of it.

An if statement can be quite complex. The condition can be turned into a series of
conditions (using the and, or, and not Boolean operators), or the if statement can
nest a second if statement. Beside nesting if statements, when there are multiple
distinct conditions, it is common to have consecutive statements if-then-else-if-
then. You can keep chaining as many of these else-if conditions as you want.

The third button of the IfTest application project demonstrates these scenarios,
using the first character of an edit box (which might be missing, hence the external
test) as input:

var
 aChar: Char;
begin
 // multiple nested if statements
 if Edit1.Text.Length > 0 then
 begin
 aChar := Edit1.Text.Chars[0];

 // checks for a lowercase char (two conditions)
 if (aChar >= 'a') and (aChar <= 'z') then
 Show ('char is lowercase');

 // follow up conditions
 if aChar <= Char(47) then
 Show ('char is lower symbol')
 else if (aChar >= '0') and (aChar <= '9') then
 Show ('char is a number')
 else
 Show ('char is not a number or lower symbol');
 end;

Look at the code carefully and run the program to see if you understand it (and play
with similar programs you can write to learn more). You can consider more options
and Boolean expressions and increase the complexity of this small example, making
any test you like.

Marco Cantù, Object Pascal Handbook

03: Language Statements - 85

Case Statements

If your if statements become very complex, at times you can replace them with
case statements. A case statement consists of an expression used to select a value
and a list of possible values, or a range of values. These values are constants, and
they must be unique and of an ordinal type. Eventually, there can be an else state-
ment that is executed if none of the values you specified correspond to the value of
the selector. While there isn't a specific endcase statement, a case is always termi-
nated by an end (which in this case isn't a block terminator, as there isn't a matching
begin).

note Creating a case statement requires an enumerated value. A case statement based on a string value
is currently not allowed. In that case you need to use nested if statements or a different data struc-
ture, like a dictionary (as I show later in the book in Chapter 14).

Here is an example (part of the CaseTest project), which uses as input the integral
part of the number entered in a NumberBox control, a numeric input control:

var
 number: Integer;
 aText: string;
begin
 number := Trunc(NumberBox1.Value);
 case number of
 1: aText := 'One';
 2: aText := 'Two';
 3: aText := 'Three';
 end;
 if aText <> '' then
 Show(aText);

Another example is the extension of the previous complex if statement, turned into
a number of different conditions of a case test:

case aChar of
 '+' : aText := 'Plus sign';
 '-' : aText := 'Minus sign';
 '*', '/': aText := 'Multiplication or division';
 '0'..'9': aText := 'Number';
 'a'..'z': aText := 'Lowercase character';
 'A'..'Z': aText := 'Uppercase character';
 #12032..#12255: aText := 'Kangxi Radical';
else
 aText := 'Other character: ' + aChar;
end;

Marco Cantù, Object Pascal Handbook

86 - 03: Language Statements

note As you can see in the previous code snippet, a range of values is defined with the same syntax of a
subrange data type. Multiple values for a single branch, instead, are separated by a comma. For
the Kangxi Radical section I've used the numerical value rather than the actual characters,

because most of the fixed-size fonts used by the IDE editor won't display properly symbols like
(the first element of the group).

It is considered good practice to include the else part to signal an undefined or
unexpected condition. A case statement in Object Pascal selects one execution path,
it doesn't position itself at an entry point. In other word, it will execute the state-
ment or block after the colon of the selected value and it will skip to the next
statement after the case.

This is very different from the C language (and some of its derived languages) which
treat branches of a switch statement as entry points and will execute all following
statements unless you specifically use a break request (although this is a specific
scenario in which Java and C# actually differ in their implementation). The C lan-
guage syntax is like the following:

switch (aChar) {
 case '+': Text = "plus sign"; break;
 case '-': Text = "minus sign"; break;
 ...
 default: Text = "unknown"; break;
}

The For Loop

The Object Pascal language has the typical repetitive or looping statements of most
programming languages, including for, while, and repeat statements, plus the
more modern for-in (or for-each) cycle. Most of these loops will be familiar if
you've used other programming languages, so I'll only cover them briefly (indicating
the key differences from other languages).

The for loop in Object Pascal is strictly based on a counter, which can be either
increased or decreased each time the loop is executed. Here is a simple example of a
for loop used to add the first ten numbers (part of the ForTest demo).

var
 Total, I: Integer;
begin
 Total := 0;
 for I := 1 to 10 do
 Total := Total + I;

Marco Cantù, Object Pascal Handbook

03: Language Statements - 87

 Show(Total.ToString);

For those curious, the output is 55. The for loop in Pascal is less flexible than in
other languages (it is not possible to specify an increment different than one), but it
is simple and easy to understand. As a comparison, this is the same for loop written
in the C language syntax:

 int total = 0;
 for (int i = 1; i <= 10; i++) {
 total = total + i;
 }

In these languages, the increment is an expression you can use to specify any kind of
sequence, which can lead to some really unreadable code as the following:

 int total = 0;
 for (int i = 10; i > 0; total += i--) {
 ..
 }

In Object Pascal, instead, you can only use a single step increment. If you want to
test for a more complex condition, or if you want to provide a customized counter,
you'll need to use a while or repeat statement, instead of a for loop.

The only alternative to single increment is single decrement, or a reverse for loop:

var
 Total, I: Integer;
begin
 Total := 0;
 for I := 10 downto 1 do
 Total := Total + I;

note Reverse counting is useful, for example, when you are affecting a list-based data structure you are
looping through. When deleting some elements, you often go backwards, as with a forward loop
you might affect the sequence you are operating onto (that is, if you delete the third element of a
list, the fourth element becomes the third: now you are on the third, move to the next one (the
fourth) but you are actually operating on what was the fifth element, skipping one).

In Object Pascal the counter of a for loop doesn't need to be a number. It can be a
value of any ordinal type, such as a character or an enumerated type. This helps you
to write more readable code. Here is an example with a for loop based on the Char
type:

var
 aChar: Char;
begin
 for aChar := 'a' to 'z' do
 Show (aChar);

This code (part of the ForTest program) shows all of the letters of the English alpha-
bet, each one in a separate line of the output Memo control.

Marco Cantù, Object Pascal Handbook

88 - 03: Language Statements

note I've already shown a similar demo, but based on an integer counter, as part of the CharsTest
example of Chapter 2. In that case, though, the chars were concatenated in a single output string.

Here is another code snippet that shows a for loop based on a custom enumeration:

type
 TSuit = (Club, Diamond, Heart, Spade);

var
 ASuit: TSuit;
begin
 for ASuit := Club to Spade do
 ...

This last loop that cycles on all of the elements of the data type, could also be written
to explicitly operate on each element of the type rather than specifically indicating
the first and the last one, by writing:

 for ASuit := Low (TSuit) to High (TSuit) do

In a similar way, it is quite common to write for loop on all elements of a data struc-
ture, such as a string. In this case you can use this code (also part of the ForTest
project):

var
 S: string;
 I: Integer;
begin
 S := 'Hello world';
 for I := Low (S) to High (S) do
 Show(S[I]);

This code can be error prone, as you need to remember how to query for the first
and last element of the structure. This is why in a similar scenario, it is better to use
a for-in loop, a special-purpose for loop discussed in the next section.

note How the compiler treats direct access to the string using the [] operators and determines the
lower and upper bounds of a string is a rather complex topic in Object Pascal. While this will be
covered in Chapter 6, the code above (and all other snippets based on strings) work in all possible
scenarios.

The for-in Loop

Microsoft's Visual Basic has always had a specific loop construct for cycling over all
of the elements of a list or collection, called for each. The same idea was later intro-
duced in C#, where the foreach mechanism is quite open and based on the use of

Marco Cantù, Object Pascal Handbook

03: Language Statements - 89

the IEnumerator interface and a standard coding pattern, while Java uses the for
keyword to express both types of for loops.

Recent versions of Object Pascal have a similar loop called for-in. In this for loop
the cycle operates on each element of an array, a list, a string, or some other type of
container. Object Pascal doesn't require the IEnumerator interface, but the internal
implementation is somewhat similar.

note You can find the technical details of how to support the for-in loop in a class, adding custom enu-
meration support, in Chapter 10.

Let's start with a very simple container, a string, which can be seen as a collection of
characters. We have seen at the end of the previous section how to use a for loop to
operate on all elements of a string. The same exact effect can be obtained with the
following for-in loop based on a string, where the Ch variable receives as value each
of the string elements in turn:

var
 S: string;
 Ch: Char;
begin
 S := 'Hello world';
 for Ch in S do
 Show(Ch);

This snippet is also part of the ForTest application project. The advantage over
using a traditional for loop is that you don't need to remember which is the first ele-
ment of the string and how to extract the position of the last one. This loop is easier
to write and maintain and has a similar efficiency.

The for-in loop can be used to access to the elements of the several different data
structures:

● Characters in a string (see the previous code snippet)
● Active values in a set
● Items in a static or dynamic array, including two-dimensional arrays (cov-

ered in Chapter 5)
● Objects referenced by classes with GetEnumerator support, including many

predefined ones like strings in a string list, elements of the various container
classes, the components owned by a form, and many others. How to imple-
ment this will be discussed in Chapter 10.

Now it is a little difficult at this point in the book to cover these advanced usage pat-
terns, so I'll get back to examples of this loop later in the book.

Marco Cantù, Object Pascal Handbook

90 - 03: Language Statements

note The for-in loop in some languages (for example JavaScript) has a bad reputation for being very
slow to run. This is not the case in Object Pascal, where is takes about the same time of a corre-
sponding standard for loop. To prove this, I've added to the LoopsTest application project some
timing code, which first creates a string of 30 million elements and later scans it with both types of
loops (doing a very simple operation at each iteration. The difference in speed is about 10% in
favor of the classic for loop (62 milliseconds vs. 68 milliseconds on my Windows machine).

While and Repeat Statements

The idea behind the while-do and the repeat-until loops is repeating the execu-
tion of a code block over and over until a given condition is met. The difference
between these two loops is that condition is checked at the beginning or at the end
of the loop. In other words, the code block of the repeat statement is always exe-
cuted at least once.

note Most other programming languages have only one type of open looping statement, generally called
and behaving like a while loop. The C language syntax has the same two option as the Pascal syn-
tax, with the while and do-while cycles. Notice, thought, that they use the same logical condition,
differently from the repeat-until loop that has a reverse condition.

You can easily understand why the repeat loop is always executed at least once, by
looking at a simple code example:

while (I <= 100) and (J <= 100) do
begin
 // use I and J to compute something...
 I := I + 1;
 J := J + 1;
end;

repeat
 // use I and J to compute something...
 I := I + 1;
 J := J + 1;
until (I > 100) or (J > 100);

note You will have noticed that in both the while and repeat conditions I have enclosed the “sub-
conditions” in parentheses. It is necessary in this case, as the compiler will execute or before per-
forming the comparisons (as I covered in the section about operators of Chapter 2).

If the initial value of I or J is greater than 100, the while loop is completely skipped,
while statements inside the repeat loop are executed once anyway.

Marco Cantù, Object Pascal Handbook

03: Language Statements - 91

The other key difference between these two loops is that the repeat-until loop has
a reversed condition. This loop is executed as long as the condition is not met.
When the condition is met, the loop terminates. This is the opposite of a while-do
loop, which is executed while the condition is true. For this reason I had to reverse
the condition in the code above to obtain a similar effect.

note The “reverse condition” is formally known as the “De Morgan's” laws (described, for example, on
Wikipedia at http://en.wikipedia.org/wiki/De_Morgan%27s_laws).

Examples of Loops

To explore some more details of loops, let's look at a small practical example. The
LoopsTest program highlights the difference between a loop with a fixed counter
and a loop with an open counter. The first fixed counter loop, a for loop, displays
numbers in sequence:

var
 I: Integer;
begin
 for I := 1 to 20 do
 Show ('Number ' + IntToStr (I));
end;

The same could have been obtained also with a while loop, with an internal incre-
ment of one (notice you increment the value after using the current one). With a
while loop, however, you are free to set a custom increment, for example by 2:

var
 I: Integer;
begin
 I := 1;
 while I <= 20 do
 begin
 Show ('Number ' + IntToStr (I));
 Inc (I, 2)
 end;
end;

This code shows all of the odd numbers from one to 19. These loops with fixed
increments are logically equivalent and execute a predefined number of times. This
is not always the case. There are loops that are more undetermined in their execu-
tion, depending for example on external conditions.

Marco Cantù, Object Pascal Handbook

92 - 03: Language Statements

note When writing a while loop you must always consider the case where the condition is never met.
For example, if you write the loop above but forget to increment the loop counter, this will result
into an infinite loop (which will stall the program forever, consuming the CPU at 100%, until the
operating system kills it).

To show an example of a less deterministic loop I've written a while loop still based
on a counter, but one that is increased randomly. To accomplish this, I've called the
Random function with a range value of 100. The result of this function is a number
between 0 and 99, chosen randomly. The series of random numbers control how
many times the while loop is executed:

var
 I: Integer;
begin
 Randomize;
 I := 1;
 while I < 500 do
 begin
 Show ('Random Number: ' + IntToStr (I));
 I := I + Random (100);
 end;
end;

If you remember to add a call the Randomize procedure, which resets the random
number generator at a different point for each program execution, each time you
run the program, the numbers will be different. The following is the output of two
separate executions, displayed side by side:

Random Number: 1 Random Number: 1
Random Number: 40 Random Number: 47
Random Number: 60 Random Number: 104
Random Number: 89 Random Number: 201
Random Number: 146 Random Number: 223
Random Number: 198 Random Number: 258
Random Number: 223 Random Number: 322
Random Number: 251 Random Number: 349
Random Number: 263 Random Number: 444
Random Number: 303 Random Number: 466
Random Number: 349
Random Number: 366
Random Number: 443
Random Number: 489

Notice that not only are the generated numbers different each time, but so is the
number of items. This while loop is executed a random numbers of times. If you
execute the program several times in a row, you'll see that the output has a different
number of lines.

Marco Cantù, Object Pascal Handbook

03: Language Statements - 93

Breaking the Flow with Break and Continue

Despite the differences, each of the loops lets you execute a block of statements a
number of times, based on some rules. However, there are scenarios you might
want to add some additional behavior. Suppose, as an example, you have a for loop
where you search for the occurrence of a given letter (this code is part of the
FlowTest application project):

var
 S: string;
 I: Integer;
 Found: Boolean;
begin
 S := 'Hello World';
 Found := False;
 for I := Low (S) to High (S) do
 if (S[I]) = 'o' then
 Found := True;

At the end you can check for the value of found to see if the given letter was part of
the string. The problem is that the program keeps repeating the loop and checking
for the given character even after it found an occurrence of it (which would be an
issue with a very long string).

A classic alternative would be to turn this into a while loop and check for both con-
ditions (the loop counter and the value of Found):

var
 S: string;
 I: Integer;
 Found: Boolean;
begin
 S := 'Hello World';
 Found := False;
 I := Low (S);
 while not Found and (I <= High(S)) do
 begin
 if (S[I]) = 'o' then
 Found := True;
 Inc (I);
 end;

While this code is logical and readable, there is more code to write, and if the condi-
tions become multiple and more complex, combining all of the various options
would make the code very complicated.

That's why the language (or, to be more precise, its runtime support) has system
procedures that let you alter the standard flow of a loop's execution:

Marco Cantù, Object Pascal Handbook

94 - 03: Language Statements

· The Break procedure interrupts a loop, jumping directly to the first statement
following it, skipping any further execution

· The Continue procedure jumps to the loop test or counter increment, continuing
with the next iteration of the loop (unless the condition is no longer true or the
counter has reached its highest value)

Using the Break operation, we can modify the original loop for matching a character
as follows:

var
 S: string;
 I: Integer;
 Found: Boolean;
begin
 S := 'Hello World';
 Found := False;
 for I := Low (S) to High (S) do
 if (S[I]) = 'o' then
 begin
 Found := True;
 Break; // jumps out of the for loop
 end;

Two more system procedures, Exit and Halt, let you immediately return from the
current function or procedure or terminate the program. I'll cover Exit in the next
chapter, while there is basically no reason to ever call Halt (so I won't really discuss
it in the book).

Here Comes Goto? No Way

There is actually more to breaking the flow than the four system procedures above.
The original Pascal language counted among its features the infamous goto state-
ment, letting you attach a label to any line of the source code, and jump to that line
from another location. Differently from conditional and looping statements, which
reveal why you want to diverge from a sequential code flow, goto statements gener-
ally look like erratic jumps, and are really completely discouraged. Did I mention
they are not supported in Object Pascal? No, I didn't, nor am I going to show you a
code example. To me goto is long gone.

note There are other language statements I haven't covered so far but are part of the language defini-
tion. One of them is the with statement, which is specifically tied to records, so I'll cover it in
Chapter 5. With is another “debated” language feature, but not hated as much as goto.

Marco Cantù, Object Pascal Handbook

04: Procedures and Functions - 95

04: procedures

and functions

Another important idea emphasized in the Object Pascal language (along with simi-
lar features of the C language) is the concept of the routine, basically a series of
statements with a unique name, which can be activated many times. Routines (or
functions) are called by their name. This way you avoid having to write the same
code over and over, and will have a single version of the code used in many places
through the program. From this point of view, you can think of routines as a basic
code encapsulation mechanism.

Procedures and Functions

In Object Pascal, a routine can assume two forms: a procedure and a function. In
theory, a procedure is an operation you ask the computer to perform, a function is a
computation returning a value. This difference is emphasized by the fact that a
function has a result, a return value, or a type, while a procedure doesn't. The C lan-

Marco Cantù, Object Pascal Handbook

96 - 04: Procedures and Functions

guage syntax provides for a single mechanism, functions, and in C a procedure is a
function with a void (or null) result.

Both types of routines can have multiple parameters of specified data types. As we'll
see later, procedures and functions are also the basis of the methods of a class, and
also in this case the distinction between the two forms remains. In fact, differently
from C, C++, Java, C#, or JavaScript, you need to one of these two keywords when
declaring a function or a method.

In practice, even if there are two separate keywords, the difference between func-
tions and procedures is very limited: you can call a function to perform some work
and then ignore the result (which might be an optional error code or something like
that) or you can call a procedure which passes back a result in one of the parameters
(more on reference parameters later in this chapter).

Here is the definition of a procedure using the Object Pascal language syntax, which
uses the specific procedure keyword and is part of the FunctionTest project:

procedure Hello;
begin
 Show ('Hello world!');
end;

As a comparison, this would be the same function written with the C language syn-
tax, which has no keyword, requires the parenthesis even in case there are no
parameters, and has a void or empty return value to indicate no result:

void Hello ()
{
 Show ("Hello world!");
};

In fact, in the C language syntax there is no difference between procedure and func-
tion. In the Pascal language syntax, instead, a function has a specific keyword and
must have a return value (or return type).

note There is another very specific syntactical difference between Object Pascal and other languages,
that is presence of a semicolon at the end of the function or procedure signature in the definition,
before the begin keyword.

There are two ways to indicate the result of the function call, assign the value to
function name or use the Result keyword:

// classic style
function DoubleOld (Value: Integer) : Integer;
begin
 DoubleOld := Value * 2;
end;

Marco Cantù, Object Pascal Handbook

04: Procedures and Functions - 97

// modern alternative
function Double (Value: Integer) : Integer;
begin
 Result := Value * 2;
end;

note Differently from the classic Pascal language syntax, Object Pascal has actually three ways to indi-
cate the result of a function, including the Exit mechanism discussed in this chapter in the section
“Exit with a Result”.

The use of Result instead of the function name to assign the return value of a func-
tion is the most common syntax and tends to make the code more readable. The use
of the function name is a classic Pascal notation, now rarely used.

Again, by comparison the same function could be written with the C language syn-
tax as the following:

int Double (int Value)
{
 return Value * 2;
};

If this is how these routines can be defined, the calling syntax is relatively straight-
forward, as you type in the identifier followed by the parameters within parenthesis.
In cases where there are no parameters, the empty parenthesis can be omitted
(again, unlike languages based on the C syntax). This code snippet and several fol-
lowing ones are part of the FunctionsTest project of this chapter:

 // call the procedure
 Hello;

 // call the function
 X := Double (100);
 Y := Double (X);
 Show (Y.ToString);

This is the encapsulation of code concept that I've introduced. When you call the
Double function, you don't need to know the algorithm used to implement it. If you
later find out a better way to double numbers, you can easily change the code of the
function, but the calling code will remain unchanged (although executing it might
become faster).

The same principle can be applied to the Hello procedure: We can modify the pro-
gram output by changing the code of this procedure, and the main program code
will automatically change its effect. Here is how we can change the procedure imple-
mentation code:

procedure Hello;
begin
 Show ('Hello world, again!');

Marco Cantù, Object Pascal Handbook

98 - 04: Procedures and Functions

end;

Forward Declarations

When you need to use an identifier (of any kind), the compiler must have already
seen it, to know to what the identifier refers. For this reason, you usually provide a
full definition before using any routine. However, there are cases in which this is
not possible. If procedure A calls procedure B, and procedure B calls procedure A,
when you start writing the code, you will need to call a routine for which the com-
piler still hasn't seen a definition.

In this cases (and in many others) you can declare the existence of a procedure or
function with a certain name and given parameters, without providing its actual
code. One way to declare a procedure or functions without defining it is to write its
name and parameters (referred to as the function signature) followed by the for-
ward keyword:

procedure NewHello; forward;

Later on, the code should provide a full definition of the procedure (which must be
in the same unit), but the procedure can now be called before it is fully defined.
Here is an example, just to give you the idea:

procedure DoubleHello; forward;

procedure NewHello;
begin
 if MessageDlg ('Do you want a double message?',
 TMsgDlgType.mtConfirmation,
 [TMsgDlgBtn.mbYes, TMsgDlgBtn.mbNo],
 0) = mrYes then
 DoubleHello
 else
 ShowMessage ('Hello');
end;

procedure DoubleHello;
begin
 NewHello;
 NewHello;
end;

note The MessageDlg function called in the previous snippet is a relatively simple way to ask a confir-
mation of the user in the FireMonkey framework (a similar functions exists in the VCL framework
as well). The parameters are the message, the type of dialog box, and buttons you want to display.
The result is the identifier of the button that was selected.

Marco Cantù, Object Pascal Handbook

04: Procedures and Functions - 99

This approach (which is also part of the FunctionTest application project) allows
you to write mutual recursion: DoubleHello calls Hello, but Hello might call Dou-
bleHello too. In other words, if you keep selecting the Yes button the program will
continue showing the message, and show each twice for every Yes. In recursive
code, there must be a condition to terminate the recursion, to avoid a condition
known as stack overflow.

note Function calls use a stack for the parameters, the return value, local variables and more. If a func-
tions keeps calling itself in an endless loop, the memory area for the stack (which is generally of a
fixed and predefined size, determined by the linker) will terminate through an error known as a
stack overflow. Needless to say that the popular developers support site (www.stackoverflow.-
com) took its name from this programming error.

Although a forward procedure declaration is not very common in Object Pascal,
there is a similar case that is much more frequent. When you declare a procedure or
function in the interface section of a unit, it is automatically considered as a forward
declaration, even if the forward keyword is not present. Actually you cannot write
the body of a routine in the interface section of a unit. At the same time, you must
provide in the same unit the actual implementation of each routine you have
declared.

A Recursive Function

Given I mentioned recursion and gave a rather peculiar example of it (with two pro-
cedures calling each other), let me also show you a classic example of a recursive
function calling itself. Using recursion is often an alternative way to code a loop.

To stick with a classic demo, suppose you want to compute the power of a number,
and you lack the proper function (which is available in the run-time library, of
course). You might remember from math, that 2 at the power of 3 corresponds to
multiplying 2 by itself 3 times, that is 2*2*2.

One way to express this in code would be to write a for loop that is executed 3 times
(or the value of the exponent) and multiplies 2 (or the value of the base) by the cur-
rent total, starting with 1:

function PowerL (Base, Exp: Integer): Integer;
var
 I: Integer;
begin
 Result := 1;
 for I := 1 to Exp do
 Result := Result * Base;
end;

Marco Cantù, Object Pascal Handbook

100 - 04: Procedures and Functions

An alternative approach is to repeatedly multiply the base by the power of the same
number, with a decreasing exponent, until the exponent is 0, in which case the
result is invariably 1. This can be expressed by calling the same function over and
over, in a recursive way:

function PowerR (Base, Exp: Integer): Integer;
var
 I: Integer;
begin
 if Exp = 0 then
 Result := 1
 else
 Result := Base * PowerR (Base, Exp - 1);
end;

The recursive version of the program is likely not faster than the version based on
the for loop, nor more readable. However there are scenarios such as parsing code
structures (a tree structure for example) in which there isn't a fixed number of ele-
ments to process, and hence writing a loop is close to impossible, while a recursive
functions adapts itself to the role.

In general, though, recursive code is powerful but tends to be more complex. After
many years in which recursion was almost forgotten, compared to the early days of
programming, new functional languages such Haskell, Erlang and Elixir make
heavy use of recursion and are driving this idea back to popularity.

In any case, you can find the two power functions in the code in the FunctionTest
application project.

note The two power functions of the demo don't handle the use of a negative exponent. The recursive
version in such a case will loop forever (an until the program hits a physical constraint). Also, by
using integers it is relatively fast to reach the maximum data type size and overflow it. I wrote
these functions with these inherent limitations to try to keep their code simple.

What Is a Method?

We have seen how you can write a forward declaration in the interface section of a
unit of by using the forward keyword. The declaration of a method inside a class
type is also considered a forward declaration.

But what exactly is a method? A method is a special kind of function or procedure
that is related to one of two data types, a record or a class. In Object Pascal, every
time we handle an event for a visual component, we need to define a method, gener-
ally a procedure, but the term method is used to indicate both functions and
procedures tied to a class or record.

Marco Cantù, Object Pascal Handbook

04: Procedures and Functions - 101

Here is an empty method automatically added to the source code of a form (which is
indeed a class, as we'll explore much later in the book):

procedure TForm1.Button1Click(Sender: TObject);
begin
 {here goes your code}
end;

Parameters and Return Values

When you call a function or procedure you need to pass the correct number of
parameters and make sure they match the expected type. If not, the compiler will
issue an error message, similar to a type mismatch when you assign to a variable a
value of a wrong type. Given the previous definition of the Double function, taking
an Integer parameter, if you call:

Double (10.0);

The compiler will show the error:

[dcc32 Error] E2010 Incompatible types: 'Integer' and 'Extended'

tip The editor helps you by suggesting the parameters list of a function or procedure with a fly-by hint
as soon as you type its name and the open parenthesis. This feature is called Code Parameters and
is part of the Code Insight technology (known in other IDEs as IntelliSense).

There are scenarios in which limited type conversion is allowed, similarly to assign-
ments, but in general you should try to use parameters of the specific type (this is
compulsory for reference parameters, as we'll see in a while).

When you call a function, you can pass an expression as a parameter instead of a
value. The expression is evaluated and its result assigned to the parameter. In sim-
pler cases, you just pass the name of a variable. In this case, the value of the variable
is copied to the parameter (which generally has a different name). I strongly dis-
courage you to use the same name for a parameter and for a variable passed as the
value of that parameter, because this can be quite confusing.

Finally, notice that you can have a function or procedure with different versions (a
feature called overloading) and with parameters you can skip to let them use a pre-
defined value (a feature called default parameters). These two key features for
functions and procedures are detailed in specific sections later in this chapter.

Marco Cantù, Object Pascal Handbook

102 - 04: Procedures and Functions

Exit with a Result

We have seen that returning a result from a function uses quite a different syntax
compared to the C language (or other languages deriving from it). Not only the syn-
tax is different, but also the behavior. Assigning a value to Result (or to the function
name) doesn't terminate the function as a return statement does.

Object Pascal developers often take advantage of this feature, by using Result as a
temporary storage. Rather than writing:

function ComputeValue: Integer;
var
 value: Integer;
begin
 value := 0;
 while ...
 Inc (value);
 Result := value;
end;

You can omit the temporary variable and directly use Result instead. Whatever
value Result has when the function terminates, would be the value returned by the
function:

function ComputeValue: Integer;
begin
 Result := 0;
 while ...
 Inc (Result);
end;

On the other hand there are situations in which you want to assign a value and exit
from the procedure right away, for example in a specific if branch. If you need to
assign the function result and stop the current execution you have to use two sepa-
rate statements, assign the Result and then use the Exit keyword.

If you remember the code of the FlowTest application project of the last chapter
(covered in the section “Breaking the Flow with Break and Continue”), this could be
rewritten as a function, replacing the call to Break with a call to Exit. I've made this
change in the following code snippet, part of the ParamsTest application project:

function CharInString (S: string; Ch: Char): Boolean;
var
 I: Integer;
begin
 Result := False;
 for I := Low (S) to High (S) do
 if (S[I]) = Ch then
 begin
 Result := True;
 Exit;

Marco Cantù, Object Pascal Handbook

04: Procedures and Functions - 103

 end;
end;

In Object Pascal you can replace the two statements of the if block with a special
call to Exit passing to it the return value of the function, in a way resembling the C
language return statement. So you can write the code above in a more compact way
(also because with a single statement you can avoid the begin-end block):

function CharInString2 (S: string; Ch: Char): Boolean;
var
 I: Integer;
begin
 Result := False;
 for I := Low (S) to High (S) do
 if (S[I]) = Ch then
 Exit (True);
end;

note Exit in Object Pascal is a function so you must enclose the value to be returned in parentheses
whereas return in C-style languages is a compiler keyword not requiring parentheses.

Reference Parameters

In Object Pascal, procedures and functions allow parameter passing by value and by
reference. Passing parameters by value is the default: the value is copied on the
stack and the routine uses and manipulates this copy of the data, not the original
value (as I described earlier in the section “Function Parameters and Return Val-
ues”).

Passing a parameter by reference means that its value is not copied onto the stack in
the formal parameter of the routine. Instead, the program refers to the original
value, also in the code of the routine. This allows the procedure or function to
change the actual value of the variable that was passed as parameter. Parameter
passing by reference is expressed by the var keyword.

This technique is also available in most programming languages, because avoiding a
copy often means that the program executes faster. It isn't present in C (where you
can just use a pointer), but it was introduced in C++ and other languages based on
the C syntax, where you use the & (pass by reference) symbol. Here is an example of
passing a parameter by reference using the var keyword:

procedure DoubleTheValue (var Value: Integer);
begin
 Value := Value * 2;
end;

Marco Cantù, Object Pascal Handbook

104 - 04: Procedures and Functions

In this case, the parameter is used both to pass a value to the procedure and to
return a new value to the calling code. When you write:

var
 X: Integer;
begin
 X := 10;
 DoubleTheValue (X);
 Show (X.ToString);

the value of the X variable becomes 20, because the function uses a reference to the
original memory location of X, affecting its original value.

Compared to general parameters passing rules, passing values to reference parame-
ters is subject to more restrictive rules, given what you are passing is not a value,
but an actual variable. You cannot pass a constant value as a reference parameter,
an expression, the result of a function, or a property. Another rule is you cannot
pass a variable of a slightly different type (requiring automatic conversion). The
type of the variable and the parameter must match exactly, or as the compiler error
message says:

[dcc32 Error] E2033 Types of actual and formal var parameters must be
identical

This is the error message you'll get if you write, for example (this is also part of the
ParamsTest application project, but commented out):

var
 C: Cardinal;
begin
 C := 10;
 DoubleTheValue (C);

Passing parameters by reference makes sense for ordinal types and for records (as
we'll see in the next chapter). These types are often called value types because they
have by default a pass-by-value and assign-by-value semantic.

Object Pascal objects and strings have a slightly different behavior we'll investigate
in more detail later on. Object variables are references, so you can modify the actual
data of an object passed as parameter. These types are part of the different group,
often indicated as reference types.

Beside standard and reference (var) parameter types, Object Pascal has also a very
unusual kind of parameter specifier, out. An out parameter has no initial value and
it's used only to return a value. Except for not having an initial value, out parame-
ters behave like var parameters.

Marco Cantù, Object Pascal Handbook

04: Procedures and Functions - 105

note The out parameters were introduced for supporting the corresponding concept in Windows' Com-
ponent Object model (or COM). They are rarely used outside of this context; in general, it is better
to stick with the more efficient (and easier to understand) var parameters.

Constant Parameters

As an alternative to reference parameters, you can use a const parameter. Since you
cannot assign a new value to a constant parameter inside the routine, the compiler
can optimize parameter passing. The compiler can choose an approach similar to
reference parameters (or a const reference in C++ terms), but the behavior will
remain similar to value parameters, because the original value cannot be modified
by the function.

In fact, if you try to compile the following code (available, but commented out in the
ParamsTest project), the system will issue an error:

function DoubleTheValue (const Value: Integer): Integer;
begin
 Value := Value * 2; // compiler error
 Result := Value;
end;

The error message you'll see might not be immediately intuitive, as it says:

[dcc32 Error] E2064 Left side cannot be assigned to

Constant parameters are quite common for strings, because in this case the com-
piler can disable the reference counting mechanism obtaining a slight optimization.
The same is true for passing constant objects in versions of Object Pascal that use
ARC (Automatic Reference Counting). More about these topics later on in the book:
It is worth mentioning them here anyway because these optimizations are the most
common reason for using constant parameters, a features that make limited sense
for ordinal and scalar types.

Function Overloading

At times you might want to have two very similar functions with different parame-
ters and a different implementation. While traditionally you'd have to come up with
a slight different name for each, modern programming languages let you overload a
symbol with multiple definitions.

The idea of overloading is simple: The compiler allows you to define two or more
functions or procedures using the same name, provided that the parameters are dif-

Marco Cantù, Object Pascal Handbook

106 - 04: Procedures and Functions

ferent. By checking the parameters, in fact, the compiler can determine which of the
version of the function you want to call.

Consider this series of functions extracted from the System.Math unit of the run-
time library:

function Min (A,B: Integer): Integer; overload;
function Min (A,B: Int64): Int64; overload;
function Min (A,B: Single): Single; overload;
function Min (A,B: Double): Double; overload;
function Min (A,B: Extended): Extended; overload;

When you call Min (10, 20), the compiler determines that you're calling the first
function of the group, so the return value will also be an Integer.

There are two basic rules of overloading:

● Each version of an overloaded function (or procedure) must be followed by
the overload keyword (including the first one).

● Among overloaded functions, there must be a difference in the number or in
the type of the parameters. Parameter names are not considered, because
they are not indicated during the call. Also, the return type cannot be used
to distinguish among two overloaded functions.

note There is an exception to the rule you cannot distinguish functions on the return values and it is for
the Implicit and Explicit conversion operators, covered in Chapter 5.

Here are three overloaded versions of a ShowMsg procedure I've added to the Over-
loadTest example (an application demonstrating both overloading and default
parameters):

procedure ShowMsg (str: string); overload;
begin
 Show ('Message: ' + str);
end;

procedure ShowMsg (FormatStr: string;
 Params: array of const); overload;
begin
 Show ('Message: ' + Format (FormatStr, Params));
end;

procedure ShowMsg (I: Integer; Str: string); overload;
begin
 Show (I.ToString + ' ' + Str);
end;

The three functions show a message box with a string, after optionally formatting
the string in different ways. Here are the three calls of the program:

Marco Cantù, Object Pascal Handbook

04: Procedures and Functions - 107

ShowMsg ('Hello');
ShowMsg ('Total = %d.', [100]);
ShowMsg (10, 'MBytes');

And this is their effect:

Message: Hello
Message: Total = 100.
Message: 10 MBytes

tip The Code Parameters technology of the IDE works very nicely with overloaded procedures and
functions. As you type the open parenthesis after the routine name, all the available alternatives
are listed. As you enter the parameters, the Code Insight technology uses their type to determine
which of the alternatives are still available.

What if you try to call the function with parameters that don't match any of the
available overloaded versions? You'll get an error message, of course. Suppose you
want to call:

ShowMsg (10.0, 'Hello');

The error you'll see in this case is a very specific one:

[dcc32 Error] E2250 There is no overloaded version of 'ShowMsg' that
can be called with these arguments

The fact that each version of an overloaded routine must be properly marked
implies that you cannot overload an existing routine of the same unit that is not
marked with the overload keyword.

The error message you get when you try is:

Previous declaration of '<name>' was not marked with the 'overload'
directive.

You can, however, create a routine with the same name of one that was declared in a
different unit, given that units act as namespaces. In this case, you are not overload-
ing a function with a new version, but you are replacing the function with a new
version, hiding the original one (which can be referenced using the unit name pre-
fix). This is why the compiler won't be able to pick a version based on the
parameters, but it will try to match the only version is sees, issuing an error if the
parameters types don't match.

Overloading and Ambiguous Calls

When you call an overloaded function, the compiler will generally find a match and
work correctly or issue an error if none of the overloaded versions has the right
parameters (as we have just seen).

Marco Cantù, Object Pascal Handbook

108 - 04: Procedures and Functions

But there is also a third scenario: Given the compiler can do some type conversions
for the parameters of a function, there might be different possible conversions for a
single call. When the compiler finds multiple versions of a function it can call, and
there isn't one that is a perfect type match (which would be picked) it issues an error
message indicating that the function call is ambiguous.

This is not a common scenario, and I had to build a rather illogical example to show
it to you, but it is worth considering the case (as it does happen occasionally in real
world).

Suppose you decide to implement two overloaded functions to add integers and
floating point numbers:

function Add (N: Integer; S: Single): Single; overload;
begin
 Result := N + S;
end;

function Add (S: Single; N: Integer): Single; overload;
begin
 Result := N + S;
end;

These functions are in the OverloadTest application project. Now you can call them
passing the two parameters in any order:

Show (Add (10, 10.0).ToString);
Show (Add (10.0, 10).ToString);

However the fact is that, in general, a function can accept a parameter of a different
type when there is a conversion, like accepting an integer when the function expects
a parameter of a floating point type. So what happens if you call:

Show (Add (10, 10).ToString);

The compiler can call the first version of the overloaded function, but it can also call
the second version. Not knowing what you are asking for (and know knowing if call-
ing one function or the other will produce the same effect), it will issue an error:

[dcc32 Error] E2251 Ambiguous overloaded call to 'Add'
 Related method: function Add(Integer; Single): Single;
 Related method: function Add(Single; Integer): Single;

tip In the errors pane of the IDE you'll see an error message with the first line above, and a plus sign
on the side you can expand to see the following two lines with the details of which overloaded
functions the compiler is considering ambiguous.

If this is a real world scenario, and you need to make the call, you can add a manual
type conversions call to solve the problem and indicate to the compiler which of the
versions of the function you want to call:

Marco Cantù, Object Pascal Handbook

04: Procedures and Functions - 109

Show (Add (10, 10.ToSingle).ToString);

A particular case of ambiguous calls can happen if you use variants, a rather pecu-
liar data type I'll cover only later in the book.

Default Parameters

Another feature related to overloading, is the possibility of giving a default value to
some of the parameters of a function, so that you can call the function with or with-
out those parameters. If the parameter is missing in the call, it will take the default
value.

Let me show an example (still part of the OverloadTest application project). We can
define the following encapsulation of the Show call, providing two default parame-
ters:

procedure NewMessage (Msg: string;
 Caption: string = 'Message';
 Separator: string = ': ');
begin
 Show (Caption + Separator + Msg);
end;

With this definition, we can call the procedure in each of the following ways:

NewMessage ('Something wrong here!');
NewMessage ('Something wrong here!', 'Attention');
NewMessage ('Hello', 'Message', '--');

This is the output:

Message: Something wrong here!
Attention: Something wrong here!
Message--Hello

Notice that the compiler doesn't generate any special code to support default
parameters; nor does it create multiple (overloaded) copies of the functions or pro-
cedure. The missing parameters are simply added by the compiler to the calling
code. There is one important restriction affecting the use of default parameters: You
cannot "skip" parameters. For example, you can't pass the third parameter to the
function after omitting the second one.

There are a few other rules for the definition and the calls of functions and proce-
dures (and methods) with default parameters:

· In a call, you can only omit parameters starting from the last one. In other words,
if you omit a parameter you must also omit the following ones.

Marco Cantù, Object Pascal Handbook

110 - 04: Procedures and Functions

· In a definition, parameters with default values must be at the end of the parame-
ters list.

· Default values must be constants. Obviously, this limits the types you can use
with default parameters. For example, a dynamic array or an interface type can-
not have a default parameter other than nil; records cannot be used at all.

· Parameters with defaults must be passed by value or as const. A reference (var)
parameter cannot have a default value.

Using default parameters and overloading at the same time makes it more likely to
get you in a situation which confuses the compiler, raising an ambiguous call error,
as mentioned in the previous section. For example, if I add the following new ver-
sion of the NewMessage procedure to the previous example:

procedure NewMessage (Str: string; I: Integer = 0); overload;
begin
 Show (Str + ': ' + IntToStr (I))
end;

then the compiler won't complain, as this is a legitimate definition. However, the
call:

NewMessage ('Hello');

is flagged by the compiler as:

[dcc32 Error] E2251 Ambiguous overloaded call to 'NewMessage'
 Related method: procedure NewMessage(string; string; string);
 Related method: procedure NewMessage(string; Integer);

Notice that this error shows up in a line of code that compiled correctly before the
new overloaded definition. In practice, we have no way to call the NewMessage proce-
dure with one string parameter, as the compiler doesn't know whether we want to
call the version with only the string parameter or the one with the string parameter
and the integer parameter with a default value. When it has a similar doubt, the
compiler stops and asks the programmer to state his or her intentions more clearly.

Inlining

Inlining Object Pascal functions and methods is a low-level language feature that
can lead to significant optimizations. Generally, when you call a method, the com-
piler generates some code to let your program jump to a new execution point. This
implies setting up a stack frame and doing a few more operations and might require
a dozen or so machine instructions. However, the method you execute might be very

Marco Cantù, Object Pascal Handbook

04: Procedures and Functions - 111

short, possibly even an access method that simply sets or returns some private field.
In such a case, it makes a lot of sense to copy the actual code to the call location,
avoiding the stack frame setup and everything else. By removing this overhead, your
program will run faster, particularly when the call takes place in a tight loop exe-
cuted thousands of times.

For some very small functions, the resulting code might even be smaller, as the code
pasted in place might be smaller than the code required for the function call. How-
ever, notice that if a longer function is inlined and this function is called in many
different places in your program, you might experience code bloat, which is an
unnecessary increase in the size of the executable file.

In Object Pascal you can ask the compiler to inline a function (or a method) with the
inline directive, placed after the function (or method) declaration. It is not neces-
sary to repeat this directive in the definition. Always keep in mind that the inline
directive is only a hint to the compiler, which can decide that the function is not a
good candidate for inlining and skip your request (without warning you in any way).
The compiler might also inline some, but not necessarily all, of the calls of the func-
tion after analyzing the calling code and depending on the status of the $INLINE
directive at the calling location. This directive can assume three different values
(notice that this feature is independent from the optimization compiler switch):

● With {$INLINE OFF} you can suppress inlining in a program, in a portion of
a program, or for a specific call site, regardless of the presence of the inline
directive in the functions being called.

● With default value, {$INLINE ON}, inlining is enabled for functions marked
by the inline directive.

● With {$INLINE AUTO} the compiler will generally inline the functions you
mark with the directive, plus automatically inline very short functions.
Watch out because this directive can cause code bloat.

There are many functions in the Object Pascal Run-Time Library that have been
marked as inline candidates. For example, the Max function of the System.Math unit
has definitions like:

function Max(const A, B: Integer): Integer;
 overload; inline;

To test the actual effect of inlining this function, I’ve written the following loop in
the InliningTest application project:

var
 sw: TStopWatch;
 I, J: Integer;
begin
 J := 0;
 sw := TStopWatch.StartNew;

Marco Cantù, Object Pascal Handbook

112 - 04: Procedures and Functions

 for I := 0 to LoopCount do
 J := Max (I, J);
 sw.Stop;
 Show ('Max ' + J.ToString +
 ' [' + sw.ElapsedMilliseconds.ToString + '] ');

In this code, the TStopWatch record of the System.Diagnostics unit, a structure that
keep track of the time (or system ticks) elapsed between the Start (or StartNew)
and the Stop calls.

The form has two buttons both calling this same exact code, but one of them has
inlining disabled at the call site. Notice you need to compile with the Release config-
uration to see any difference (as inlining is a Release optimization). With twenty
million interactions (the value of the LoopCount constant), on my computer I get the
following results:

// on Windows (running in a VM)
Max on 20000000 [17]
Max off 20000000 [45]

// on Android (on device)
Max on 20000000 [280]
Max off 20000000 [376]

How can we read this data? On Windows, inlining more than doubles the execution
speed, while on Android it makes the program about 35% faster. However, on a
device the program runs much slower (an order of magnitude) so while on Windows
we shave off 30 milliseconds on my Android device this optimization saves about
100 milliseconds.

The same program does a second similar test with the Length function, a compiler-
magic function that was specifically modified to be inlined. Again the inlined ver-
sion is significantly faster on both Windows and Android:

// on Windows (running in a VM)
Length inlined 260000013 [11]
Length not inlined 260000013 [40]

// on Android (on device)
Length inlined 260000013 [401]
Length not inlined 260000013 [474]

This is the code used by this second testing loop:

var
 sw: TStopWatch;
 I, J: Integer;
 sample: string;
begin
 J := 0;
 sample:= 'sample string';
 sw := TStopWatch.StartNew;

Marco Cantù, Object Pascal Handbook

04: Procedures and Functions - 113

 for I := 0 to LoopCount do
 Inc (J, Length(sample));
 sw.Stop;
 Show ('Length not inlined ' + IntToStr (J) +
 ' [' + IntToStr (sw.ElapsedMilliseconds) + '] ');
end;

The Object Pascal compiler doesn’t define a clear cut limit on the size of a function
that can be inlined or a specific list of constructs (for or while loops, conditional
statements) that would prevent inlining. However, since inlining a large function
provides little advantage yet exposes you to the risk of some real disadvantages (in
terms of code bloat), you should avoid it.

One limitation is that the method or function cannot reference identifiers (such as
types, global variables, or functions) defined in the implementation section of the
unit, as they won’t be accessible in the call location. However, if you are calling a
local function, which happens to be inlined as well, then the compiler will accept
your request to inline your routine.

A drawback is that inlining requires more frequent recompilations of units, as when
you modify an inlined function, the code of each of the calling sites will need to be
recompiled as well. Within a unit, you might write the code of the inlined functions
before calling them, but better place them at the beginning of the implementation
section.

note Object Pascal uses a single pass compiler, so it cannot paste in the code of a function it hasn’t com-
piled yet.

Within different units, you need to specifically add other units with inlined func-
tions to your uses statements, even if you don’t call those methods directly. Suppose
your unit A calls an inlined function defined in unit B. If this function in turn calls
another inlined function in unit C, your unit A needs to refer to C as well. If not,
you’ll see a compiler warning indicating the call was not inlined due to the missing
unit reference. A related effect is that functions are never inlined when there are cir-
cular unit references (through their implementation sections).

Advanced Features of Functions

If what I have covered so far includes the core features related to functions, there
are several advanced capabilities worth exploring. If you are really a newbie in

Marco Cantù, Object Pascal Handbook

114 - 04: Procedures and Functions

terms of software development, however, you might want to skip the rest of this
chapter for now and move to the next one.

Object Pascal Calling Conventions

Whenever your code calls a function, the two sides need to agree on the actual prac-
tical way parameters are passed from the caller to the callee, something called
calling convention. Generally, a function call takes place by passing the parameters
(and expecting the return value) via the stack memory area. However, the order in
which the parameters and return value are placed on the stack changes depending
on the programming language and platform, with most languages capable of using
multiple different calling conventions.

A long time ago, the 32-bit version of Delphi introduced a new approach to passing
parameters, known as “fastcall”: Whenever possible, up to three parameters can be
passed in CPU registers, making the function call much faster. Object Pascal uses
this fast calling convention by default although it can also be requested by using the
register keyword.

The problem is that this is the default convention, and functions using it are not
compatible with external libraries, like Windows API functions in Win32. The func-
tions of the Win32 API must be declared using the stdcall (standard call) calling
convention, a mixture of the original pascal calling convention of the Win16 API
and the cdecl calling convention of the C language. All of these calling conventions
are supported in Object Pascal, but you'll rarely use something different than the
default unless you need to invoke a library written in a different language, like a sys-
tem library.

The typical case you need to move away from the default fast calling convention is
when you need to call the native API of a platform, which requires a different calling
convention depending on the operating system. Even Win64 uses a different model
to Win32, so Object Pascal supports many different options, not really worth detail-
ing here. Mobile operating systems, instead, tend to expose classes, rather than
native functions, although the issue of respecting a given calling convention has to
be taken into account even in that scenario.

Procedural Types

Another unique feature of Object Pascal is the presence of procedural types. These
are really an advanced language topic, which only a few programmers will use regu-

Marco Cantù, Object Pascal Handbook

04: Procedures and Functions - 115

larly. However, since we will discuss related topics in later chapters (specifically,
method pointers, a technique heavily used by the environment to define event han-
dlers, and anonymous methods), it's worth giving a quick look at them here.

In Object Pascal (but not in the more traditional Pascal language) there is the con-
cept of a procedural type (which is similar to the C language concept of a function
pointer – something languages like C# and Java have dropped, because it is tied to
global functions).

The declaration of a procedural type indicates the list of parameters and, in the case
of a function, the return type. For example, you can declare a new procedural type,
with an Integer parameter passed by reference, with this code:

type
 TIntProc = procedure (var Num: Integer);

This procedural type is compatible with any routine having exactly the same param-
eters (or the same function signature to use C jargon). Here is an example of a
compatible routine:

procedure DoubleTheValue (var Value: Integer);
begin
 Value := Value * 2;
end;

Procedural types can be used for two different purposes: you can declare variables
of a procedural type or pass a procedural type (that is, a function pointer) as param-
eter to another routine. Given the preceding type and procedure declarations, you
can write this code:

var
 IP: TIntProc;
 X: Integer;
begin
 IP := DoubleTheValue;
 X := 5;
 IP (X);
end;

This code has the same effect as the following shorter version:

var
 X: Integer;
begin
 X := 5;
 DoubleTheValue (X);
end;

The first version is clearly more complex, so why and when should we use it? There
are cases in which being able to decide which function to call and actually calling it
later on can be very powerful. It is possible to build a complex example showing this

Marco Cantù, Object Pascal Handbook

116 - 04: Procedures and Functions

approach. However, I prefer to let you explore a fairly simple application project,
called ProcType.

This example is based on two procedures. One procedure is used to double the value
of the parameter like the one I've already shown. A second procedure is used to
triple the value of the parameter, and therefore is named TripleTheValue:

procedure TripleTheValue (var Value: Integer);
begin
 Value := Value * 3;
end;

Instead of calling these functions directly, one or the other are saved in a procedural
type variable. The variable is modified as a users selects a checkbox, and the current
procedure is called in this generic way as a user clicks the button. The program uses
two initialized global variables (the procedure to be called and the current value), so
that these values are preserved over time. This is the full code, save for the defini-
tions of the actual procedures, already shown above:

var
 IntProc: TIntProc = DoubleTheValue;
 Value: Integer = 1;

procedure TForm1.CheckBox1Change(Sender: TObject);
begin
 if CheckBox1.IsChecked then
 IntProc := TripleTheValue
 else
 IntProc := DoubleTheValue;
end;

procedure TForm1.Button1Click(Sender: TObject);
begin
 IntProc (Value);
 Show (Value.ToString);
end;

When the user changes the check box status, all following button clicks will call the
active function. So if you press the button twice, change the selection, and press the
button twice again, you'll first double twice and then triple twice the current value,
producing the following output:

2
4
12
36

Another practical example of the use of procedural types is when you need to pass a
function to an operating system like Windows (where they are generally called “call-
back functions”). As mentioned at the beginning of this section, in addition to

Marco Cantù, Object Pascal Handbook

04: Procedures and Functions - 117

procedural types Object Pascal developers use method pointers (covered in Chapter
10) and anonymous methods (covered in Chapter 15).

note The most common object oriented mechanism to obtain a late bound function call (that is a func-
tion call that can change at runtime) is the use of virtual methods. While virtual methods are very
common in Object Pascal, procedural types are seldom used. The technical foundation, though, is
somehow similar. Virtual functions and polymorphism are covered in Chapter 8.

External Functions Declarations

Another important element for system programming is represented by external dec-
larations. Originally used to link code to external functions that were written in
assembly language, external declarations became commonplace Windows program-
ming to call a function from a DLL (a dynamic link library). An external function
declaration implies the ability to call a function not fully available to the compiler or
the linker, but requiring the ability to load an external dynamic library and invoke
one of its functions.

note Whenever you call an API for a given platform in your Object Pascal code you lose the ability to
recompile the application for any other platform than the specific one. The exception is if the call
is surrounded by platform specific $IFDEF compiler directives.

This is, for example, how you can invoke Windows API functions from an Object
Pascal application. If you open the Winapi.Windows unit you'll find many function
declarations and definitions like:

// forward declaration
function GetUserName(lpBuffer: LPWSTR;
 var nSize: DWORD): BOOL; stdcall;

// external declaration (instead of actual code)
function GetUserName; external advapi32
 name 'GetUserNameW';

You seldom need to write declarations like the one just illustrated, since they are
already listed in the Windows unit and many other system units. The only reason you
might need to write this external declaration code is to call functions from a custom
DLL, or to call Windows functions not translated in the platform API.

This declaration means that the code of the function GetUserName is stored in the
advapi32 dynamic library (advapi32 is a constant associated with the full name of
the DLL, 'advapi32.dll') with the name GetUserNameW, as this API function has both
an ASCII and a WideString version. Inside an external declaration, in fact, we can

Marco Cantù, Object Pascal Handbook

118 - 04: Procedures and Functions

specify that our function refers to a function of a DLL that originally had a different
name.

Delayed Loading of DLL Functions

In the Windows operating system, there are two ways to invoke an API function of
the Windows SDK (or any other DLL): you can let the application loader resolve all
references to external functions or you can write specific code that looks for a func-
tion and executes it if available.

The former code is easier to write (as we saw in the previous section): as all you
need is the external function declaration. However if the library or even just one of
the functions you want to call is not available on all versions of Windows, your pro-
gram will not be able to start on the operating system versions that don't provide
that function.

Dynamic loading allows for more flexibility, but implies loading the library manu-
ally, using the GetProcAddress API for finding the function you want to call, and
invoking it after casting the pointer to the proper type. This kind of code is quite
cumbersome and error prone.

That's why it is good that the Object Pascal compiler and linker have specific sup-
port for a feature now available at the Windows operating system level and already
used by some C++ compilers, the delayed loading of functions until the time they
are called. The aim of this declaration is not to avoid the implicit loading of the DLL,
which takes place anyway, but to allow the delayed binding of that specific function
within the DLL.

You basically write the code in a way that's very similar to the classic execution of
DLL function, but the function address is resolved the first time the function is
called and not at load time. This means that if the function is not available you get a
run-time exception, EExternalException. However, you can generally verify the
current version of the operating system or the version of the specific library you are
calling, and decide in advance whether you want to make the call or not.

note If you want something more specific and easier to handle at a global level than an exception, you
can hook into the error mechanism for the delayed loading call, as explained by Allen Bauer in his
blog post: http://blogs.embarcadero.com/abauer/2009/08/29/38896

From the Object Pascal language perspective, the only difference is in the declara-
tion of the external function. Rather than writing:

function MessageBox;

Marco Cantù, Object Pascal Handbook

04: Procedures and Functions - 119

 external user32 name 'MessageBoxW';

You can now write (again, from an actual example in the Windows unit):

function WindowFromPhysicalPoint;
 external user32
 name 'WindowFromPhysicalPoint' delayed;

At run time, considering that the API was added to Windows Vista (that is, Win-
dows 6.0) for the first time, you might want to write code like the following:

 if CheckWin32Version (6, 0) then
 begin
 hwnd := WindowFromPhysicalPoint (aPoint);

This is much, much less code than you had to write without delayed loading to be
able to run the same program on older versions of Windows.

Another relevant observation is that you can use the same mechanism when build-
ing your own DLLs and calling them in Object Pascal, providing a single executable
that can bind to multiple versions of the same DLL as long as you use delayed load-
ing for the new functions.

Again, this is mostly related to Windows programming, and doesn't really apply to
other operating systems that expose classes and higher level abstractions rather
than plain C language functions as the core of the Windows API still does today.
Given features like external declarations and delayed loading are technically part of
the compiler and the language, though, I though it was worth mentioning them in
this chapter.

Marco Cantù, Object Pascal Handbook

120 - 04: Procedures and Functions

Marco Cantù, Object Pascal Handbook

05: Arrays and Records - 121

05: arrays and

records

When I introduced data types in Chapter 2, I referred to the fact that in Object Pas-
cal there are both built in data types and type constructors. A simple example of a
type constructor is the enumerated type, covered in that chapter.

The real power of type definition comes with more advanced mechanisms, such as
arrays, records, and classes. In this chapter I'll cover the first two, which in their
essence date back to the early definition of Pascal, but have been changed so much
over the years (and made so powerful) that they barely resemble their ancestral type
constructors with the same name.

Towards the end of the chapter I'll also briefly introduce some advanced Object Pas-
cal data types as pointers. The real power of custom data types, however, will be
unveiled in Chapter 7, where we'll start looking into classes and object-oriented pro-
gramming.

Marco Cantù, Object Pascal Handbook

122 - 05: Arrays and Records

Array Data Types

Array types define lists with elements of a specific type. These lists can have a fixed
number of elements (static arrays) or of a variable number of elements (dynamic
arrays). You generally use an index within square brackets to access one of the ele-
ments of an array. Square brackets are also used to specify the number of values of a
fixed size array.

The Object Pascal language supports different array types, from traditional static
arrays to dynamic ones. Use of dynamic arrays is recommended, particularly with
the mobile versions of the compiler. I'll introduce static arrays first, and later focus
on dynamic ones.

Static Arrays

Traditional Pascal language arrays are defined with a static or fixed size. An exam-
ple is in the following code snippets, which defines a list of 24 integers, presenting
the temperatures during the 24 hours of a day:

type
 TDayTemperatures = array [1..24] of Integer;

In this classic array definition, you can use a subrange type within square brackets,
actually defining a new specific subrange type using two constants of an ordinal
type. This subrange indicates the valid indexes of the array. Since you specify both
the upper and the lower index of the array, the indexes don’t need to be zero-based,
as it is the case in C, C++, Java, and most other languages (although 0-based arrays
are also quite common in Object Pascal). Notice also that static array indexes in
Object Pascal can be numbers, but also other ordinal types like characters, enumer-
ated types, and more. Non-integral indexes are quite rare, though.

note There are languages like JavaScript that make heavy use of associative arrays. Object Pascal arrays
are limited to ordinal indexes, so you cannot directly use a string as index. There are ready to use
data structures in the RTL implementing Dictionaries and other similar data structures that pro-
vide such features. I'll cover them in the chapter about Generics, in the third part of the book.

Since the array indexes are based on subranges, the compiler can check their range.
An invalid constant subrange results in a compile-time error; and an out-of-range
index used at run-time results in a run-time error, but only if the corresponding
compiler option is enabled.

Marco Cantù, Object Pascal Handbook

05: Arrays and Records - 123

note This is the Range checking option of the Runtime errors group of the Compiling page of the
Project Options dialog of the IDE. I've already mentioned this option in Chapter 2, in the section
“Subrange Types”.

Using the array definition above, you can set the value of a DayTemp1 variable of the
TDayTemperatures type as follows (and as I've done in the ArraysTest application
project, from which the following code snippets have been extracted):

type
 TDayTemperatures = array [1..24] of Integer;

var
 DayTemp1: TDayTemperatures;

begin
 DayTemp1 [1] := 54;
 DayTemp1 [2] := 52;
 ...
 DayTemp1 [24] := 66;

 // The following line causes:
 // E1012 Constant expression violates subrange bounds
 // DayTemp1 [25] := 67;

Now a standard way to operate on arrays, given their nature, is to use for cycles.
This is an example of a loop used to display all of the temperatures for a day:

var
 I: Integer;
begin
 for I := 1 to 24 do
 Show (I.ToString + ': ' + DayTemp1[I].ToString);

While this code works, having hard-coded the array boundaries (1 and 24) is far
from ideal, as the array definition itself might change over time and you might want
to move to using a dynamic array.

Array Size and Boundaries

When you work with an array, you can always test its boundaries by using the stan-
dard Low and High functions, which return the lower and upper bounds. Using Low
and High when operating on an array is highly recommended, especially in loops,
since it makes the code independent of the current range of the array (which might
go from 0 to the length of the array minus one, might start form 1 and reach the
array's length, or have any other subrange definition). If you should later change the
declared range of the array indexes, code that uses Low and High will still work. If
you write a loop hard-coding the range of an array you’ll have to update the code of

Marco Cantù, Object Pascal Handbook

124 - 05: Arrays and Records

the loop when the array size changes. Low and High make your code easier to main-
tain and more reliable.

note Incidentally, there is no run-time overhead for using Low and High with static arrays. They are
resolved at compile-time into constant expressions, not actual function calls. This compile-time
resolution of expressions and function calls also happens for many other system functions.

Another relevant function is Length, which returns the number of elements of the
array. I've combined these three functions in the following code that computes and
displays the average temperature for the day:

var
 I: Integer;
 Total: Integer;
begin
 Total := 0;
 for I := Low(DayTemp1) to High(DayTemp1) do
 Inc (Total, DayTemp1[I]);
 Show ((Total / Length(DayTemp1)).ToString);

This code is also part of the ArraysTest application project.

Multi-Dimensional Static Arrays

An array can have more than one dimension, expressing a matrix or a cube rather
than a list. Here are two sample definitions:

type
 TAllMonthTemps = array [1..24, 1..31] of Integer;
 TAllYearTemps = array [1..24, 1..31, 1..12] of Integer;

You can access an element as:

var
 AllMonth1: TAllMonthTemps;
 AllYear1: TAllYearTemps;
begin
 AllMonth1 [13, 30] := 55; // hour, day
 AllYear1 [13, 30, 8] := 55; // hour, day, month

note Static arrays immediately take up a lot of memory (in the case above on the stack), which should
be avoided. The AllYear1 variable requires 8,928 Integers, taking up 4 bytes each, that is almost
35KB. Allocating such a large block in the global memory or on the stack (as in the demo code) is
really a mistake. A dynamic array, instead, uses the heap memory, and offers much more flexibil-
ity in terms of memory allocation and management.

Marco Cantù, Object Pascal Handbook

05: Arrays and Records - 125

Given these two array types are built on the same core types, you should better
declare them using the preceding data types, as in the following code:

type
 TMonthTemps = array [1..31] of TDayTemperatures;
 TYearTemps = array [1..12] of TMonthTemps;

This declaration inverts the order of the indexes as presented above, but it also
allows assignment of whole blocks between variables. Let's see how you can assign
individual values:

 Month1 [30][14] := 44;
 Month1 [30, 13] := 55; // day, hour
 Year1 [8, 30, 13] := 55; // month, day, hour

In theory, you should use the first line, selecting one of the array of arrays, and then
an element of the resulting array. However, the version with the two indexes within
square brackets is also allowed. Or with three indexes, in the “cube” example.

The importance of using intermediate types lies on the fact that arrays are type com-
patible only if they refer to the same exact type name (that is exactly the same type
definition) not if their type definitions happen to refer to the same implementation.
This type compatibility rule is the same for all types in the Object Pascal, with only
some specific exceptions.

For example, the following statement copies a months's temperatures to the third
month of the year:

 Year1[3] := Month1;

Instead, a similar statement based on the stand alone array definitions (which are
not type compatible):

 AllYear1[3] := AllMonth1;

would cause the error:

Error: Incompatible types: 'array[1..31] of array[1..12] of Integer'
and 'TAllMonthTemps'

As I mentioned, static arrays suffer memory management issues, specifically when
you want to pass them as parameters or allocate only a portion of a large array.
Moreover, you cannot resize them during the lifetime of the array variable. This is
why is is preferable to use dynamic arrays, even if they require a little extra manage-
ment, for example regarding memory allocation.

Marco Cantù, Object Pascal Handbook

126 - 05: Arrays and Records

Dynamic Arrays

In the traditional Pascal language arrays had a fixed-size arrays and you specified
the number of elements of the array as you declared the data type. Object Pascal
supports also a direct and native implementation of dynamic arrays.

note “Direct implementation of dynamic arrays” here is in contrast to using pointers and dynamic
memory allocation to obtain a similar effect... with very complex and error-prone code.

Dynamic arrays are dynamically allocated and reference counted (making parame-
ter passing much faster, as only the reference is passed, and not a copy of the
complete array). When you are done, you can clear an array by setting its variable to
nil or its length to zero, but given they are reference counted in most cases the
compiler will automatically free the memory for you.

With a dynamic array, you declare an array type without specifying the number of
elements and then allocate it with a given size using the SetLength procedure:

var
 Array1: array of Integer;
begin
 // this would cause a runtime Range Check error
 // Array1 [1] := 100;
 SetLength (Array1, 10);
 Array1 [1] := 100; // this is OK

You cannot use the array until you've assigned its length, allocating the required
memory on the heap. If you do so, you'd either see a Range Check error (if the cor-
responding compiler option is active) or an Access Violation (on Windows) or
similar memory access error on another platform. The SetLength call sets all the
values to zero. The initialization code makes it possible to start reading and writing
values of the array right away, without any fear of memory errors (unless you violate
the array boundaries).

If you do need to allocate memory explicitly, you don't need to free it directly. In the
code snippet above, as the code terminates and the Array1 variable goes out of
scope, the compiler will automatically free its memory (in this case the ten integers
that have been allocated). So while you can assign a dynamic array variable to nil or
call SetLength with 0 value, this is generally not needed (and rarely done).

Notice that the SetLength procedure can also be used to resize an array, without los-
ing its current content (if you are growing it) but you would lose some elements (if
you are shrinking it). As in the initial SetLength call you indicate only the number of
elements of the array, the index of a dynamic array invariably starts from 0 and goes
up to the number of elements minus 1. In other words, dynamic arrays don't sup-

Marco Cantù, Object Pascal Handbook

05: Arrays and Records - 127

port two features of classic static Pascal arrays, the non-zero low bound and the
non-integer indexes. At the same time, they match more closely how arrays work in
most languages based on the C syntax.

Just like static arrays, to know about the current size of a dynamic array, you can
use the Length, High, and Low functions. For dynamic arrays, however, Low always
returns 0, and High always returns the length minus one. This implies that for an
empty array High returns -1 (which, when you think about it, is a strange value, as it
is lower than that returned by Low).

So, as an example, in the DynArray application project I've populated and extracted
the information from a dynamic array using adaptable loops. This is the type and
variable definition:

type
 TIntegersArray = array of Integer;

var
 IntArray1: TIntegersArray;

The array is allocated and populated with values matching the index, using the fol-
lowing loop:

var
 I: Integer;
begin
 SetLength (IntArray1, 20);
 for I := Low (IntArray1) to High (IntArray1) do
 IntArray1 [I] := I;
end;

A second button has the code both to display each value and compute the average,
similar to that of the previous example but in a single loop:

var
 I: Integer;
 total: Integer;
begin
 Total := 0;
 for I := Low(IntArray1) to High(IntArray1) do
 begin
 Inc (Total, IntArray1[I]);
 Show (I.ToString + ': ' + IntArray1[I].ToString);
 end;
 Show ('Average: ' + (Total / Length(IntArray1)).ToString);
end;

The output of this code is quite obvious (and mostly omitted):

0: 0
1: 1
2: 2
3: 3

Marco Cantù, Object Pascal Handbook

128 - 05: Arrays and Records

...
17: 17
18: 18
19: 19
Average: 9.5

Beside Length, SetLength, Low, and High, there are also other common procedures
that you can use on arrays, such as the Copy function, you can use to copy a portion
of an array (or all of it). Notice that you can also assign an array from a variable to
another, but in that case you are not making a full copy, but rather having two vari-
ables referring to the same array in memory.

The only slightly complex code is in the final part of the DynArray application
project, which copies one array to the other in two different ways:

· using the Copy function, which duplicates the array data in a new data structure
using a separate memory area

· using the assignment operator, which effectively creates an alias, a new variable
referring to the same array in memory

At this point, if you modify one of the elements of the new arrays, you will affect the
original version or not depending on the way you made the copy. This is the com-
plete code:

var
 IntArray2: TIntegersArray;
 IntArray3: TIntegersArray;
begin
 // alias
 IntArray2 := IntArray1;

 // separate copy
 IntArray3 := Copy (IntArray1, Low(IntArray1), Length(IntArray1));

 // modify items
 IntArray2 [1] := 100;
 IntArray3 [2] := 100;

 // check values for each array
 Show (Format ('[%d] %d -- %d -- %d',
 [1, IntArray1 [1], IntArray2 [1], IntArray3 [1]]));
 Show (Format ('[%d] %d -- %d -- %d',
 [2, IntArray1 [2], IntArray2 [2], IntArray3 [2]]));

The output you'll get is like the following:

[1] 100 -- 100 -- 1
[2] 2 -- 2 -- 100

The changes to IntArray2 propagate to IntArray1, because they are just two refer-
ences to the same physical array; the changes to IntArray3 are separate, because it
has a separate copy of the data.

Marco Cantù, Object Pascal Handbook

05: Arrays and Records - 129

New Native Operations on Dynamic Arrays

There was a recent addition to dynamic arrays, making them even more a prime
feature of the language, namely support for assigning constant arrays to dynamic
arrays and for dynamic arrays concatenation.

note These extensions to dynamic arrays were added in Delphi XE7.

In practice, you can write code like the following, which is significantly simplified
from earlier code snippets:

var
 di: array of Integer;
 i: Integer;
begin
 di := [1, 2, 3]; // initialization
 di := di + di; // concatenation
 di := di + [4, 5]; // mixed concatenation

 for i in di do
 begin
 Show (i.ToString);
 end;

Notice the use of a for-in statement to scan the array elements in this code, which is
part of the DynArrayConcat application project. Notice that these arrays can be
based on any data type, from simple integers like in the code above, to record and
classes.

There is a second addition that was done along side with assignment and concatena-
tion, but that is part of the RTL more than the language. It is now possible to use on
dynamic arrays functions that were common for strings, like Insert and Delete.

This means you can now write code like the following (part of the same project):

var
 di: array of Integer;
 i: Integer;
begin
 di := [1, 2, 3, 4, 5, 6];
 Insert ([8, 9], di, 4);
 Delete (di, 2, 1); // remove the third (0-based)

Marco Cantù, Object Pascal Handbook

130 - 05: Arrays and Records

Open Array Parameters

There is a very special scenario for the use of arrays, which is passing a flexible list
of parameters to a function. Beside passing an array directly, there are two special
syntax structures explained in this and the next section. An example of such a func-
tion, by the way, is the Format function that I called in the last code snippet and that
has an array of values in square brackets as its second parameter.

Unlike the C language (and some of the other languages based on C syntax), in the
traditional Pascal language a function or procedure always has a fixed number of
parameters. However, in Object Pascal there is a way to pass a varying number of
parameters to a routine using as parameter an array, a technique known as open
array parameters.

note Historically, open array parameters predate dynamic arrays, but today these two features look so
similar in the way they work that they are almost indistinguishable these days. That's why I cov-
ered open array parameters only after discussing dynamic arrays.

The basic definition of an open array parameter is the same as that of a typed
dynamic array type, prefixed by the const specifier. This means you indicate the
type of the parameter(s), but you don't need to indicate how many elements of that
type the array is going to have. Here is an example of such a definition, extracted
form the OpenArray application project:

function Sum (const A: array of Integer): Integer;
var
 I: Integer;
begin
 Result := 0;
 for I := Low(A) to High(A) do
 Result := Result + A[I];
end;

You can call this function by passing to it an array-of-Integer constant expression
(which can also include variables as part of the expressions used to compute the
individual values):

X := Sum ([10, Y, 27*I]);

Given a dynamic array of Integer, you can pass it directly to a routine requiring
an open array parameter of the same base type (Integers in this case). Here is an
example, where the complete array is passed as parameter:

var
 List: array of Integer;
 X, I: Integer;
begin

Marco Cantù, Object Pascal Handbook

05: Arrays and Records - 131

 // initialize the array
 SetLength (List, 10);
 for I := Low (List) to High (List) do
 List [I] := I * 2;
 // call
 X := Sum (List);

This is if you have a dynamic array. If you have a static array of the matching base
type, you can also pass it to a functions expecting an open array parameter, or you
can call the Slice function to pass only a portion of the existing array (as indicated
by its second parameter). The following snippet (also part of the OpenArray applica-
tion project) shows how to pass a static array or a portion of it to the Sum function:

var
 List: array [1..10] of Integer;
 X, I: Integer;
begin
 // initialize the array
 for I := Low (List) to High (List) do
 List [I] := I * 2;

 // call
 X := Sum (List);
 Show (X.ToString);

 // pass portion of the array
 X := Sum (Slice (List, 5));
 Show (X.ToString);

Type-Variant Open Array Parameters

Besides these typed open array parameters, the Object Pascal language allows you
to define type-variant or untyped open arrays. This special kind of array has an
undefined number of elements, but also an undefined data type for those elements
along with the possibility of passing elements of different types. This is one of the
limited areas of the language that is not fully type safe.

Technically, the you can define a parameter of type array of const to pass an array
with an undefined number of elements of different types to a function. For example,
here is the definition of the Format function (we'll see how to use this function in
Chapter 6, while covering strings, but I've already used it is some demos):

function Format (const Format: string;
 const Args: array of const): string;

The second parameter is an open array, which receives an undefined number of val-
ues. In fact, you can call this function in the following ways:

N := 20;
S := 'Total:';
Show (Format ('Total: %d', [N]));

Marco Cantù, Object Pascal Handbook

132 - 05: Arrays and Records

Show (Format ('Int: %d, Float: %f', [N, 12.4]));
Show (Format ('%s %d', [S, N * 2]));

Notice that you can pass a parameter as either a constant value, the value of a vari-
able, or an expression. Declaring a function of this kind is simple, but how do you
code it? How do you know the types of the parameters? The values of a type-variant
open array parameter are compatible with the TVarRec type elements.

note Do not confuse the TVarRec record with the TVarData record used by the Variant type. These two
structures have a different aim and are not compatible. Even the list of possible types is different,
because TVarRec can hold Object Pascal data types, while TVarData can hold Windows OLE data
types. Variants are covered later in this chapter.

The following are the data types supported in a type-variant open array value and by
the TVarRec record:

 vtInteger vtBoolean vtChar
 vtExtended vtString vtPointer
 vtPChar vtObject vtClass
 vtWideChar vtPWideChar vtAnsiString
 vtCurrency vtVariant vtInterface
 vtWideString vtInt64 vtUnicodeString

The record structure has a field with the type (VType) and variant field you can use
to access the actual data (more about records in a few pages, even if this is an
advanced usage for that construct).

A typical approach is to use a case statement to operate on the different types of
parameters you can receive in such a call. In the SumAll function example, I want to
be able to sum values of different types, transforming strings to integers, characters
to the corresponding ordinal value, and adding 1 for True Boolean values. The code
is certainly quite advanced (and it uses pointer dereferences), so don't worry if you
don't fully understand it for now:

function SumAll (const Args: array of const): Extended;
var
 I: Integer;
begin
 Result := 0;
 for I := Low(Args) to High (Args) do
 case Args [I].VType of
 vtInteger:
 Result := Result + Args [I].VInteger;
 vtBoolean:
 if Args [I].VBoolean then
 Result := Result + 1;
 vtExtended:
 Result := Result + Args [I].VExtended^;
 vtWideChar:
 Result := Result + Ord (Args [I].VWideChar);

Marco Cantù, Object Pascal Handbook

05: Arrays and Records - 133

 vtCurrency:
 Result := Result + Args [I].VCurrency^;
 end; // case
end;

I've added this function to the OpenArray application project, which calls it as fol-
lows:

var
 X: Extended;
 Y: Integer;
begin
 Y := 10;
 X := SumAll ([Y * Y, 'k', True, 10.34]);
 Show ('SumAll: ' + X.ToString);
end;

The output of this call adds the square of Y, the ordinal value of K (which is 107), 1
for the Boolean value, and the extended number, resulting in:

SumAll: 218.34

Record Data Types

While arrays define lists of identical items referenced by a numerical index, records
define groups of elements of different types referenced by name. In other words, a
record is a list of named items, or fields, each with a specific data type. The defini-
tion of a record type lists all these fields, giving each field a name used to refer to it.

note Records are available in most programming languages. They are defined with the struct keyword
in the C language, while C++ has an extended definition including methods, much like Object Pas-
cal has. Some more “pure” object-oriented languages have only the notion of class, not that of a
record or structure.

Here is a small code snippet (from the RecordsDemo application project) with the
definition of a record type, the declaration of a variable of that type, and few state-
ments using this variable:

type
 TMyDate = record
 Year: Integer;
 Month: Byte;
 Day: Byte;
 end;

var

Marco Cantù, Object Pascal Handbook

134 - 05: Arrays and Records

 BirthDay: TMyDate;
begin
 BirthDay.Year := 1997;
 BirthDay.Month := 2;
 BirthDay.Day := 14;
 Show ('Born in year ' + BirthDay.Year.ToString);

note The term records is at times used in a rather loose way to refer to two different elements of the
language: a record type definition and a variable of record type (or record instance). Record is
used as a synonym of both record type and record instance, unlike for class types in which case the
instance is called object.

There is way more to this data structure in Object Pascal than a simple list of fields,
as the remaining part of this chapter will illustrate, but let's start with this tradi-
tional approach to records. The memory for a record is generally allocated on the
stack for a local variable and in the global memory for a global one. This is high-
lighted by a call to SizeOf, which returns the number of bytes required by a variable
or type, like in this statement:

 Show ('Record size is ' + SizeOf (BirthDay).ToString);

which returns 8 (why it does return 8 and not 6, 4 bytes for the Integer and two for
each byte field, I'll discuss in the section “Fields Alignments”).

In other words, records are value types. This implies that if you assign a record to
another, you are making a full copy. If you make a change to a copy, the original
record won't be affected. This code snippets explains the concept in code terms:

var
 BirthDay: TMyDate;
 ADay: TMyDate;
begin
 BirthDay.Year := 1997;
 BirthDay.Month := 2;
 BirthDay.Day := 14;

 ADay := Birthday;
 ADay.Year := 2008;

 Show (MyDateToString (BirthDay));
 Show (MyDateToString (ADay));

The output (in Japanese or international date format) is:

1997.2.14
2008.2.14

The same copy operation takes place when you pass a record as parameter to a func-
tion, like in the MyDateToString I used above:

function MyDateToString (MyDate: TMyDate): string;
begin

Marco Cantù, Object Pascal Handbook

05: Arrays and Records - 135

 Result := MyDate.Year.ToString + '.' +
 MyDate.Month.ToString + '.' +
 MyDate.Day.ToString;
end;

Each call to this function involves a complete copy of the record's data. To avoid the
copy, and to possibly make a change to the original record you have to explicitly use
a reference parameter. This is highlighted by the following procedure, that makes
some changes to a record passed as parameter:

procedure IncreaseYear (var MyDate: TMyDate);
begin
 Inc (MyDate.Year);
end;

var
 ADay: TMyDate;
begin
 ADay.Year := 2016;
 ADay.Month := 3;
 ADay.Day := 18;

 Increaseyear (ADay);
 Show (MyDateToString (ADay));

Given the Year field of the original record value is increased by the procedure call,
the final output is one year later than the input:

2017.3.18

Using Arrays of Records

As I mentioned, arrays represent a data structure repeated several times, while
records a single structure with different elements. Given these two type constructors
are orthogonal, it is very common to use them together, defining arrays of records
(while it is possible but uncommon to see records of arrays).

The array code is just like that of any other array, with each array element taking the
size of the specific record type. While we'll see later how to use more sophisticated
collection or container classes (for lists of elements), there is a lot in terms of data
management you can achieve with arrays of records.

In the RecordsTest application project I've added an array of the TMyDate type,
which can be allocated, initialized and used with code like the following:

var
 DatesList: array of TMyDate;
 I: Integer;
begin
 // allocate array elements

Marco Cantù, Object Pascal Handbook

136 - 05: Arrays and Records

 SetLength (DatesList, 5);

 // assign random values
 for I := Low(DatesList) to High(DatesList) do
 begin
 DatesList[I].Year := 2000 + Random (50);
 DatesList[I].Month := 1 + Random (12);
 DatesList[I].Day := 1 + Random (27);
 end;

 // display the values
 for I := Low(DatesList) to High(DatesList) do
 Show (I.ToString + ': ' +
 MyDateToString (DatesList[I]));

Given the app uses random data, the output will be different every time, and could
be like the following I've captured:

0: 2014.11.8
1: 2005.9.14
2: 2037.9.21
3: 2029.3.12
4: 2012.7.2

Variant Records

Since the early versions of the language, record types can also have a variant part;
that is, multiple fields can be mapped to the same memory area, even if they have a
different data type. (This corresponds to a union in the C language.) Alternatively,
you can use these variant fields or groups of fields to access the same memory loca-
tion within a record, but considering those values from different perspectives (in
terms of data types). The main uses of this type were to store similar, but different
data and to obtain an effect similar to that of typecasting (something used in the
early days of the language, when direct typecasting was not allowed). The use of
variant record types has been largely replaced by object-oriented and other modern
techniques, although some system libraries use them internally in special cases.

The use of a variant record type is not type-safe and is not a recommended pro-
gramming practice, particularly for beginners. You won’t need to tackle them until
you are really an Object Pascal expert, anyway... and that's why I decided to avoid
showing you actual samples and covering this feature in more detail. If you really
want a hint, have a look at the use of TvarRec I did in the demo of the section “Type-
Variant Open Array Parameters”.

Marco Cantù, Object Pascal Handbook

05: Arrays and Records - 137

Fields Alignments

Another advanced topic related with records is the way their fields are aligned,
which also helps understand the actual size of a record. If you look into libraries,
you'll often see the use of the packed keyword applied to records: this implies the
record should use the minimum possible amount of bytes, even if this result in
slower data access operations.

The difference is traditionally related to 16-bit or 32-bit alignment of the various
fields, so that a byte followed by an integer might end up taking up 32 bits even if
only 8 are used. This is because accessing the following integer value on the 32-bit
boundary makes the code faster to execute.

In general field alignment is used by data structures like records to improve the
access speed to individual fields for some CPU architectures. There are different
parameters you can apply to the $ALIGN compiler directive to change it.

With {$ALIGN 1} the compiler will save on memory usage by using all possible
bytes, like when you use the packed specifier for a record. At the other extreme, the
{$ALIGN 16} will use the largest alignment. Further options use 4 and 8 alignments.

As an example, if I go back to the RecordsTest project and add the keyword packed
to the record definition:

type
 TMyDate = packed record
 Year: Integer;
 Month: Byte;
 Day: Byte;
 end;

the output to the call SizeOf will now return 6 rather than 8.

As a more advanced example, which you can skip if you are not already a fluent
Object Pascal developer, let's consider the following structure (available in the
AlignTest application project):

type
 TMyRecord = record
 c: Byte;
 w: Word;
 b: Boolean;
 I: Integer;
 d: Double;
 end;

With {$ALIGN 1} the structure takes 16 bytes (the value returned by SizeOf) and the
fields will be at the following relative memory addresses:

c: 0 w: 1 b: 3 i: 4 d: 8

Marco Cantù, Object Pascal Handbook

138 - 05: Arrays and Records

note Relative addresses are computed by allocating the record and computing the difference between
the numeric value of a pointer to the structure and that of a pointer to the given field, with an
expression like: Integer(@MyRec.w) – Integer(@MyRec1). Pointers and the address of (@) oper-
ator are covered later in this chapter.

In contrast, if you change the alignment to 4 (which can lead to optimized data
access) the size will be 20 bytes and the relative addresses:

c: 0 w: 2 b: 4 i: 8 d: 12

If you go to the extreme option and use {$ALIGN 16}, the structure requires 24
bytes and maps the fields as follow:

c: 0 w: 2 b: 4 i: 8 d: 16

What About the With Statement?

Another traditional language statement I failed to mention so far, because it is used
only to work with records or classes, is the with statement. This keyword used to be
peculiar to the Pascal syntax, but it was later introduced in JavaScript and Visual
Basic. This is a keyword that can come up very handy to write less code, but it can
also become very dangerous as it makes code far less readable.

You'll find a lot of debate around the with statement, and I tend to agree this should
be used sparingly, if at all. In any case, I felt it was important to include it in this
book anyway (differently from goto statements).

note There is some debate about whether it will make sense to remove goto statements from the Object
Pascal language, and it was also discussed whether to remove with from the mobile version of the
language. While there are some legitimate usages, given the scoping problems with statements
can cause, there are good reasons to discontinue this features (or change it so that an alias name is
required as in C#).

The with statement is nothing but a shorthand. When you need to refer to a record
type variable (or an object), instead of repeating its name every time, you can use a
with statement.

For example, while presenting the record type, I wrote this code:

var
 BirthDay: TMyDate;
begin
 BirthDay.Year := 2008;
 BirthDay.Month := 2;
 BirthDay.Day := 14;

Marco Cantù, Object Pascal Handbook

05: Arrays and Records - 139

Using a with statement, I could modify the final part of this code, as follows:

 with BirthDay do
 begin
 Year := 2008;
 Month := 2;
 Day := 14;
 end;

This approach can be used in Object Pascal programs to refer to components and
other classes. When you work with components or classes in general, the with state-
ment allows you to skip writing some code, particularly for nested data structures.

So, why am I not encouraging the use of the with statement? The reason is it can
least to subtle errors that are very hard to capture. While some of these hard-to-find
errors are not easy to explain at this point of the book, let's consider a mild scenario,
that can still lead to you scratching your head. This is a record type and some code
using it:

type
 TMyRecord = record
 MyName: string;
 MyValue: Integer;
 end;

procedure TForm1.Button2Click(Sender: TObject);
var
 Record1: TMyRecord;
begin
 with Record1 do
 begin
 MyName := 'Joe';
 MyValue := 22;
 end;

 with Record1 do
 Show (Name + ': ' + MyValue.ToString);

Right? The application compiles and runs, but its output is not what you might
expect (at least at first sight):

Form1: 22

The string part of the output is not the record value that was set earlier. The reason
is that the second with statement erroneously uses the Name field, which is not the
record field but another field that happens to be in scope (specifically the name of
the form object the Button2Click method is part of).

If you had written:

Show (Record1.Name + ': ' + Record1.MyValue.ToString);

Marco Cantù, Object Pascal Handbook

140 - 05: Arrays and Records

the compiler would have shown an error message, indicating the given record struc-
ture hasn't got a Name field.

In general, we can say that since the with statement introduces new identifiers in
the current scope, we might hide existing identifiers, or wrongfully access another
identifier in the same scope. This is a good reason for discouraging the use of the
with statement. Even more you should avoid using multiple with statements, such
as:

with MyRecord1, MyDate1 do...

The code following this would probably be highly unreadable, because for each field
used in the block you would need to think about which record it refers to.

Records with Methods

In Object Pascal records are more powerful than in the original Pascal language or
than structs are in the C language. Records, in fact, can have procedure and func-
tions (called methods) associated with them. They can even redefine the language
operators in custom ways (a feature called operator overloading), as you'll see in
the next section.

A record with methods is somewhat similar to a class, as we'll find out later, with the
most important difference being the way these two structures manage memory.
Records in Object Pascal have two fundamental features of modern programming
languages:

· Methods, which are functions and procedures connected with the record data
structure and having direct access to the record fields. In other words, methods
are function and procedures declared (or having a forward declaration) within
the record type definition.

· Encapsulation, which is the ability to hide direct access to some of the fields
(or methods) of a data structure from the rest of the code. You can obtain encap-
sulation using the private access specifier, while fields and methods visible to
the outside as marked as public. The default access specifier for a record is pub-
lic.

Now that you have the core concepts around extended records, let's look at the defi-
nition of a sample record, taken from the RecordMethods application project:

type
 TMyRecord = record
 private

Marco Cantù, Object Pascal Handbook

05: Arrays and Records - 141

 Name: string;
 Value: Integer;
 SomeChar: Char;
 public
 procedure Print;
 procedure SetValue (NewString: string);
 procedure Init (NewValue: Integer);
 end;

You can see the record structure is divided in two parts, private and public. You can
have multiple sections, as the private and public keywords can be repeated as many
times as you want, but a clear division of these two sections certainly helps readabil-
ity. The methods are listed in the record definition (like in a class definition)
without their complete code. In other words, the record has a forward declaration of
the method.

How do you write the actual code of a method, its complete definition? Almost in
the same way you'd code a global function or procedure. The differences are in the
way you write the method name, which is a combination of the record type name
and the actual record name and on the fact you can directly refer to the fields and
the other methods of the record directly, with no need to write the name of the
record:

procedure TMyRecord.SetValue (NewString: string);
begin
 Name := NewString;
end;

note While it might seem tedious having to write the definition of the method first and its full declara-
tion next, you can use the Ctrl+Shift+C combination in the IDE editor to generate one from the
other automatically. Also you can use the Ctrl+Shift+Up/Down Arrow keys to move from a
method declaration to the corresponding definition and vice verse.

Here is the code of the other methods of this record type:

procedure TMyRecord.Init(NewValue: Integer);
begin
 Value := NewValue;
 SomeChar := 'A';
end;

function TMyRecord.ToString: string;
begin
 Result := Name + ' [' + SomeChar + ']: ' + Value.ToString;
end;

Here is a sample snippet of how you can use this record:

var
 MyRec: TMyRecord;
begin

Marco Cantù, Object Pascal Handbook

142 - 05: Arrays and Records

 MyRec.Init(10);
 MyRec.SetValue ('hello');
 Show (MyRec.ToString);

As you might have guessed, the output will be:

hello [A]: 10

Now what if you want to use the fields from the code that uses the record, like in the
snippet above:

 MyRec.Value := 20;

This actually compiles and works, which might be surprising as we declared the
field in the private section, so that only the record methods can access to it. The
truth is that in Object Pascal the private access specifier is actually enabled only
between different units, so that line wouldn't be legal in a different unit, but can be
used in the unit that originally defined the data type. As we will see, this is also true
for classes.

Self: The Magic Behind Records

Suppose you have two records, like myrec1 and myrec2 of the same record type.
When you call a method and execute its code, how does the method know which of
the two copies of the record it has to work with? Behind the scenes, when you define
a method the compiler adds a hidden parameter to it, a reference to the record you
have applied the method to.

In other words, the call to the method above is converted by the compiler in some-
thing like:

// you write
MyRec.SetValue ('hello');

// the compiler generates
SetValue (@MyRec, 'hello');

In this pseudo code, the @ is the address of operator, used to get the memory loca-
tion of a record instance.

note Again, the address of operator is shortly covered at the end of this chapter in the (advanced) sec-
tion titled “What About Pointers?”

This is how the calling code is translated, but how can the actual method call refer
and use this hidden parameter? By implicitly using a special keyword called self.
So the method's code could be written as:

procedure TMyRecord.SetValue (NewString: string);

Marco Cantù, Object Pascal Handbook

05: Arrays and Records - 143

begin
 self.Name := NewString;
end;

While this code compiles, it makes little sense to use self explicitly, unless you need
to refer to the record as a whole, for example passing the record as parameter to
another function. This happens more frequently with classes, which have the same
exact hidden parameter for methods and the same self keyword.

One situation in which using an explicit self parameter can make the code more
readable (even if it is not required) is when you are manipulating a second data
structure of the same type, as in case you are testing a value from another instance:

function TMyRecord.IsSameName (ARecord: TMyRecord): Boolean;
begin
 Result := (self.Name = ARecord.Name);
end;

note The “hidden” self parameter is called this in C++ and Java, but it is called self in Objective-C
(and in Object Pascal, of course).

Records and Constructors

When you define a variable of a record type (or a record instance) as a global vari-
able its fields are initialized, but when you define one on the stack (as a local
variable of a function or procedure, it isn't). So if you write code like this (also part
of the RecordMethods project):

var
 MyRec: TMyRecord;
begin
 Show (MyRec.ToString);

its output will be more or less random. While the string is initialized to an empty
string, the character field and the integer field will have the data that happened to
be at the given memory location (just as it happens in general for a character or
integer variable on the stack). In general, you'd get different output depending on
the actual compilation or execution, such as:

 []: 1637580

That's why it is important to initialize a record (as most other variables) before
using it, to avoid the risk of reading illogical data, which can even potentially crash
the application.

Records support a special type of methods called constructors, that you can use to
initialize the record data. Differently from other methods, constructors can also be

Marco Cantù, Object Pascal Handbook

144 - 05: Arrays and Records

applied to a record type to define a new instance (but they can still be applied to an
existing instance).

This is how you can add a constructor to a record:

type
 TMyNewRecord = record
 private
 ...
 public
 constructor Create (NewString: string);
 function ToString: string;
 ...

The constructor is a method with code:

constructor TMyNewRecord.Create (NewString: string);
begin
 Name := NewString;
 Init (0);
end;

Now you can initialize a record with either of the two following coding styles:

var
 MyRec, MyRec2: TMyNewRecord;
begin
 MyRec := TMyNewRecord.Create ('Myself'); // class-like
 MyRec2.Create ('Myself'); // direct call

Notice that record constructors must have parameters: If you try with Create()
you'll get the error message “Parameterless constructors not allowed on record
types”.

note According to the documentation the definition of a parameterless constructor for records is
reserved for the system (which has its way to initialize some of the records fields, such as strings
and interfaces). This is why any user defined constructor must have at least one parameter. Of
course, you can also have multiple overloaded constructors or multiple constructors with different
names. I'll cover this in more detail when discussing constructors for classes.

Operators Gain New Ground

Another Object Pascal language feature related with records is operator overload-
ing; that is, the ability to define your own implementation for standard operations
(addition, multiplication, comparison, and so on) on your data types. The idea is
that you can implement an add operator (a special Add method) and then use the +
sign to call it. To define an operator you use class operator keyword combination.

Marco Cantù, Object Pascal Handbook

05: Arrays and Records - 145

note By reusing existing reserved words, the language designers managed to have no impact on existing
code. This is something they've done quite often recently in keyword combinations like strict
private, class operator, and class var.

The term class here relates to class methods, a concept we'll explore much later (in
Chapter 12). After the directive you write the operator’s name, such as Add:

type
 TPointRecord = record
 public
 class operator Add (
 a, b: TPointRecord): TPointRecord;

The operator Add is then called with the + symbol, as you’d expect:

var
 a, b, c: TPointRecord;
begin
 ...
 c := a + b;

So which are the available operators? Basically the entire operator set of the lan-
guage, as you cannot define brand new language operators:

● Cast Operators: Implicit and Explicit

● Unary Operators: Positive, Negative, Inc, Dec, LogicalNot, BitwiseNot,
Trunc, and Round

● Comparison Operators: Equal, NotEqual, GreaterThan, GraterThanOrE-
qual, LessThan, and LessThenOrEqual

● Binary Operators: Add, Subtract, Multiply, Divide, IntDivide, Modulus,
ShiftLeft, ShiftRight, LogicalAnd, LogicalOr, LogicalXor, BitwiseAnd,
BitwiseOr, and BitwiseXor.

In the code calling the operator, you do not use these names but use the correspond-
ing symbol. You use these special names only in the definition, with the class
operator prefix to avoid any naming conflict. For example, you can have a record
with an Add method and add an Add operator to it.

When you define these operators, you spell out the parameters, and the operator is
applied only if the parameters match exactly. To add two values of different types,
you’ll have to specify two different Add operations, as each operand could be the first
or second entry of the expression. In fact, the definition of operators provides no
automatic commutativity. Moreover, you have to indicate the type very precisely, as
automatic type conversions don’t apply. Many times this implies overloading the
overloaded operator and providing multiple versions with different types of param-
eters.

Marco Cantù, Object Pascal Handbook

146 - 05: Arrays and Records

Another important factor to notice is that there are two special operators you can
define for data conversion, Implicit and Explicit. The first is used to define an
implicit type cast (or silent conversion), which should be perfect and not lossy. The
second, Explicit, can be invoked only with an explicit type cast from a variable of a
type to another given type. Together these two operators define the casts that are
allowed to and from the given data type.

Notice that both the Implicit and the Explicit operators can be overloaded based
on the function return type, which is generally not possible for overloaded methods.
In case of a type cast, in fact, the compiler knows the expected resulting type and
can figure out which is the typecast operation to apply. As an example, I've written
the OperatorsOver application project, which defines a record with a few operators:

type
 TPointRecord = record
 private
 x, y: Integer;
 public
 procedure SetValue (x1, y1: Integer);
 class operator Add (a, b: TPointRecord): TPointRecord;
 class operator Explicit (a: TPointRecord): string;
 class operator Implicit (x1: Integer): TPointRecord;
 end;

Here is the implementation of the methods of the record:

class operator TPointRecord.Add(
 a, b: TPointRecord): TPointRecord;
begin
 Result.x := a.x + b.x;
 Result.y := a.y + b.y;
end;

class operator TPointRecord.Explicit(
 a: TPointRecord): string;
begin
 Result := Format('(%d:%d)', [a.x, a.y]);
end;

class operator TPointRecord.Implicit(
 x1: Integer): TPointRecord;
begin
 Result.x := x1;
 Result.y := 10;
end;

Using such a record is quite straightforward, as you can write code like this:

procedure TForm1.Button1Click(Sender: TObject);
var
 a, b, c: TPointRecord;
begin
 a.SetValue(10, 10);

Marco Cantù, Object Pascal Handbook

05: Arrays and Records - 147

 b := 30;
 c := a + b;
 Show (string(c));
end;

The second assignment (b:=30;) is done using the implicit operators, due to the
lack of a cast while the Show call uses the cast notation to activate an explicit type
conversion. Consider also that the operator Add doesn't modify its parameters;
rather it returns a brand new value.

note The fact operators return new values is what make it harder to think of operator overloading for
classes. If the operator creates a new dynamic objects who is going to dispose it? With the intro-
duction of ARC in the mobile compiler, though, this feature was made available... but not for the
desktop counterpart.

A little known fact is that it is technically possible to call an operator using its fully
qualified internal name (like &op_Addition), prefixing it with an &, instead of using
the operator symbol. For example, you can rewrite the records sum as follows (see
the demo for the complete listing):

c := TPointRecord.&&op_Addition(a, b);

although I can see very few marginal cases in which you might want to do so. (The
entire purpose of defining operators is to be able to use a friendlier notation than a
method name, not an uglier one as the preceding direct call.)

Implementing Commutativity

Suppose you want implement the ability to add an integer number to one of your
records. You can define the following operator (that is available in the code of the
OperatorsOver application project, for a slightly different record type):

class operator TPointRecord2.Add(a: TPointRecord2;
 b: Integer): TPointRecord2;
begin
 Result.x := a.x + b;
 Result.y := a.y + b;
end;

note The reason I've defined this operator on a new type rather than the existing one is that the same
structure already defines an Implicit conversion of an integer to the record type, so I can already
add integers and records without defining a specific operator. This issue is explained better in the
next section.

Now you can legitimately add a floating point value to a record:

var
 a: TPointRecord2;

Marco Cantù, Object Pascal Handbook

148 - 05: Arrays and Records

begin
 a.SetValue(10, 20);
 a := a + 10;

However if you try to write the opposite addition:

 a := 30 + a;

this will fail with the error:

[dcc32 Error] E2015 Operator not applicable to this operand type

In fact, as I mentioned, commutativity is not automatic for operators applied to
variables of different types, but must be specifically implemented either repeating
the call or calling (like below) the other version of the operator:

class operator TPointRecord2.Add(b: Integer;
 a: TPointRecord2): TPointRecord2;
begin
 Result := a + b; // implement commutativity
end;

Implicit Cast and Type Promotions

It is important to notice that the rules related to the resolution of calls involving
operators are different from the traditional rules involving methods. With auto-
matic type promotions there’s the chance that a single expression will end up calling
different versions of an overloaded operator and cause ambiguous calls. This is why
you need to take a lot of care when writing Implicit operators.

Consider these expressions from the previous example:

a := 50;
c := a + 30;
c := 50 + 30;
c := 50 + TPointRecord(30);

They are all legal! In the first case, the compiler converts 30 to the proper record
type, in the second the conversion takes place after the assignment, and in the third
the explicit cast forces an implicit one on the first value, so that the addition being
performed is the custom one among records. In other words the result of the second
operation is different from the other two, as highlighted in the output and in the
expanded version of these statements:

// output
(80:20)
(80:10)
(80:20)

// expanded statements
c := a + TPointRecord(30);
// that is: (50:10) + (30:10)

Marco Cantù, Object Pascal Handbook

05: Arrays and Records - 149

c := TPointRecord (50 + 30);
// that is 80 converted into (80:10)

c := TPointRecord(50) + TpointRecord(30);
// that is: (50:10) + (30:10)

Variants

Originally introduced in the language to provide full Windows OLE and COM sup-
port, Object Pascal has the concept of a loosely typed native data type called
Variant. Although the name reminds of variant records (mentioned earlier) and the
implementation has some similarity with open array parameters, this is a separate
feature with a very specific implementation (uncommon in languages outside of the
Windows development world).

In this section I won't really refer to OLE and other scenarios in which this data type
is used (like fields access for data sets). I'll get back to dynamic types, RTTI, and
reflection in Chapter 16, where I'll also cover a related (but type safe) type called
TValue. Here I want to discuss this data type from a general perspective.

Variants Have No Type

In general, you can use a variable of the variant type to store any of the basic data
types and perform numerous operations and type conversions. Automatic type con-
versions go against the general type-safe approach of the Object Pascal language
and is an implementation of a type of dynamic typing originally introduced by lan-
guages like Smalltalk and Objective-C, and recently made popular in scripting
languages including JavaScript, PHP, Python, and Ruby.

A variant is type-checked and computed at run time. The compiler won't warn you
of possible errors in the code, which can be caught only with extensive testing. On
the whole, you can consider the code portions that use variants to be interpreted
code, because, as with interpreted code, many operations cannot be resolved until
run time. In particular this affects the speed of the code.

Now that I've warned you against the use of the Variant type, it is time to look at
what you can do with it. Basically, once you've declared a variant variable such as
the following:

var
 V: Variant;

Marco Cantù, Object Pascal Handbook

150 - 05: Arrays and Records

you can assign values of several different types to it:

V := 10;
V := 'Hello, World';
V := 45.55;

Once you have the variant value, you can copy it to any compatible or incompatible
data type. If you assign a value to an incompatible data type, the compiler will gen-
erally not flag it with an error, but will perform a runtime conversion if this makes
sense. Otherwise it will issue a run-time error. Technically a variant stores type
information along with the actual data, allowing a number of handy, but slow and
unsafe, run-time operations.

Consider the following code (part of the VariantTest application project), which is
an extension of the code above:

var
 V: Variant;
 S: string;
begin
 V := 10;
 S := V;
 V := V + S;
 Show (V);

 V := 'Hello, World';
 V := V + S;
 Show (V);

 V := 45.55;
 V := V + S;
 Show (V);

Funny, isn't it? This is the output (not surprisingly):

20
Hello, World10
55.55

Besides assigning a variant holding a string to the S variable, you can assign to it a
variant holding an integer or a floating-point number. Even worse, you can use the
variants to compute values, with the operation V := V + S; that gets interpreted in
different ways depending on the data stored in the variant. In the code above, that
same line can add integers, floating point values, or concatenate strings.

Writing expressions that involve variants is risky, to say the least. If the string con-
tains a number, everything works. If not, an exception is raised. Without a
compelling reason to do so, you shouldn't use the Variant type; stick with the stan-
dard Object Pascal data types and type-checking approach.

Marco Cantù, Object Pascal Handbook

05: Arrays and Records - 151

Variants in Depth

For those interested in understanding variants in more details, let me add some
technical information about how variants work and how you can have more control
on them. The RTL includes a variant record type, TVarData, which has the same
memory layout as the Variant type. You can use this to access the actual type of a
variant. The TVarData structure includes the type of the Variant, indicated as VType,
some reserved fields, and the actual value.

note For more details look to the TVarData definition in the RTL source code, in the System unit. This
is far from a simple structure and I recommend only developers with some experience look into
the implementation details of the variant type.

The possible values of the VType field correspond to the data types you can use in
OLE automation, which are often called OLE types or variant types. Here is a com-
plete alphabetical list of the available variant types:

varAny varArray varBoolean
varByte varByRef varCurrency
varDate varDispatch varDouble
varEmpty varError varInt64
varInteger varLongWord varNull
varOleStr varRecord varShortInt
varSingle varSmallint varString
varTypeMask varUInt64 varUnknown
varUString varVariant varWord

Most of these constant names of variant types are easy to understand. Notice that
there is the concept of null value, you obtain by assigning NULL (and not nil).

There are also many functions for operating on variants that you can use to make
specific type conversions or to ask for information about the type of a variant (see,
for example, the VarType function). Most of these type conversion and assignment
functions are actually called automatically when you write expressions using vari-
ants. Other variant support routines actually operate on variant arrays, again a
structure used almost exclusively for OLE integration on Windows.

Variants Are Slow

Code that uses the Variant type is slow, not only when you convert data types, but
even when you simply add two variant values holding integers. They are almost as
slow as interpreted code. To compare the speed of an algorithm based on variants

Marco Cantù, Object Pascal Handbook

152 - 05: Arrays and Records

with that of the same code based on integers, you can look at the second button of
the VariantTest project.

This program runs a loop, timing its speed and showing the status in a progress bar.
Here is the first of the two very similar loops, based on Int64 and variants:

const
 maxno = 10000000; // 10 million

var
 time1, time2: TDateTime;
 n1, n2: Variant;
begin
 time1 := Now;
 n1 := 0;
 n2 := 0;

 while n1 < maxno do
 begin
 n2 := n2 + n1;
 Inc (n1);
 end;

 // we must use the result
 time2 := Now;
 Show (n2);
 Show ('Variants: ' + FormatDateTime (
 'ss.zzz', Time2-Time1) + ' seconds');

The timing code is worth looking at, because it's something you can easily adapt to
any kind of performance test. As you can see, the program uses the Now function to
get the current time and the FormatDateTime function to output the time difference,
showing only the seconds ("ss") and the milliseconds ("zzz").

In this example the speed difference is actually so great that you'll notice it even
without precise timing:

49999995000000
Variants: 01.169 seconds
49999995000000
Integers: 00.026 second

These are the numbers I get on my Windows virtual machine, and that's about 50
times slower for the variant based code. The actual values depend on the computer
you use to run this program, but the relative difference won't change much. Even on
my Android phone I get a similar proportion (but much longer times overall):

49999995000000
Variants: 07.717 seconds
49999995000000
Integers: 00.157 second

Marco Cantù, Object Pascal Handbook

05: Arrays and Records - 153

On my phone this code takes 6 times as much as on Windows, but now the fact is
the net different is over 7 seconds, making the variant based implementation notice-
ably slow to the user, while the Int64 based one is still extremely fast (a user would
hardly notice a tenth of a second).

What About Pointers?

Another fundamental data type of the Object Pascal language is represented by
pointers. Some of the object-oriented languages have gone a long way to hide this
powerful, but dangerous, language construct, while Object Pascal lets a programmer
use it when needed (which is generally not very often).

But what is a pointer, and where does its name come from? Differently than most
other data types, a pointer doesn't hold an actual value, but it holds an indirect ref-
erence to a variable, which in turn has a value. A more technical way to express this
is that a pointer type defines a variable that holds the memory address of another
variable of a given data type (or of an undefined type).

note This is an advanced section of the book, added here because pointers are part of the Object Pascal
language and should be part of the core knowledge of any developer, although it is not a basic
topic and if you are new to the language you might want to skip this section the first time you read
the book. Again, there is a chance you might have used programming languages with no (explicit)
pointers, so this short section could be an interesting read!

The definition of a pointer type is not based on a specific keyword, but uses a special
symbol, the caret (^). For example you can define a pointer to variable of the Inte-
ger type with the following declaration:

type
 TPointerToInt = ^Integer;

Once you have defined a pointer variable, you can assign to it the address of another
variable of the same type, using the @ operator:

var
 P: ^Integer;
 X: Integer;
begin
 X := 10;
 P := @X;
 // change the value of X using the pointer
 P^ := 20;
 Show ('X: ' + X.ToString);
 Show ('P^: ' + P^.ToString);

Marco Cantù, Object Pascal Handbook

154 - 05: Arrays and Records

 Show ('P: ' + Integer(P).ToHexString (8));

This code is part of the PointersTest application project. Given the pointer P refers
to the variable X, you can use P^ to refer to the value of the variable, and read or
change it. You can also display the value of the pointer itself, that is the memory
address of X, by casting the pointer to an integer. Rather than showing the plain
numeric value, the code shows the hexadecimal representation, which is more com-
mon for memory addresses. This is the output (where the pointer address might
depend on the specific compilation):

X: 20
P^: 20
P: 0018FC18

warn Casting the pointer to an Integer is correct code only on 32-bit platforms, not on 64-bit ones. A
better option is to cast to NativeInt, however that type lacks the integer helpers, and that would
have made the sample code more complex. So the code of this demo is 32-bit specific.

Let me summarize, for clarity. When you have a pointer P:

· By using the pointer directly (with the expression P) you refer to the address of
the memory location the pointer is referring to

· By dereferencing the pointer (with the expression P^) you refer to the actual con-
tent of that memory location

Instead of referring to an existing memory location, a pointer can also refer to a new
and specific memory block dynamically allocated on the heap with the New proce-
dure. In this case, when you don't need the value accessed by the pointer anymore,
you’ll also have to get rid of the memory you’ve dynamically allocated, by calling the
Dispose procedure.

note Memory management in general and the way the heap works in particular are covered in Chapter
13. In short, the heap is a (large) area of memory in which you can allocate and release blocks of
memory in no given order. As an alternative to New and Dispose you can use GetMem and FreeMem,
but the former two are preferable and safer to use.

Here is a code snippet that allocates memory dynamically:

var
 P: ^Integer;
begin
 // initialization
 New (P);
 // operations
 P^ := 20;
 Show (P^.ToString);
 // termination

Marco Cantù, Object Pascal Handbook

05: Arrays and Records - 155

 Dispose (P);

If you don't dispose of the memory after using it, your program may eventually use
up all the available memory and crash. The failure to release memory you don't
need any more is known as a memory leak.

note To be safer the code above should indeed use an exception handling try-finally block, a topic I
decided not to introduce at this point of the book, but I'll cover later in Chapter 9.

If a pointer has no value, you can assign the nil value to it. You can test whether a
pointer is nil to see if it currently refers to a value with a direct equality test or by
using the specific Assigned function as shown below.

This kind of test is often used, because dereferencing (that is accessing the value at
the memory address stored in the pointer) an invalid pointer causes a memory
access violation (with slightly different effects depending on the operating system):

var
 P: ^Integer;
begin
 P := nil;
 Show (P^.ToString);

You can see an example of the effect of this code by running the PointersTest appli-
cation project. The error you'll see (on Windows) should be similar to:

Access violation at address 0080B14E in module 'PointersTest.exe'. Read
of address 00000000.

One of the ways to make pointer data access safer, is to add a “pointer is not null”
safe-check like the following:

 if P <> nil then
 Show (P^.ToString);

As I mentioned earlier, an alternative way, which is generally preferable for read-
ability reasons, is to use the Assigned pseudo-function:

 if Assigned (P) then
 writeln (P^.ToString);

note Assigned is not a real function, because it is “resolved” by the compiler producing the proper
code. Also, it can be used over a procedural type variable (or method reference) without actually
invoking it, but only checking if it is assigned.

Object Pascal also defines a Pointer data type, which indicates untyped pointers
(such as void* in the C language). If you use an untyped pointer you should use
GetMem instead of New (indicating the number of bytes to allocate, given this value

Marco Cantù, Object Pascal Handbook

156 - 05: Arrays and Records

cannot be inferred from the type itself). The GetMem procedure is required each time
the size of the memory variable to allocate is not defined.

The fact that pointers are seldom necessary in Object Pascal is an interesting advan-
tage of this language. Still, having this feature available can help in implementing
some extremely efficient low level functions and when calling the API of an operat-
ing system. In any case, understanding pointers is important for advanced
programming and for a full understanding of language object model, which uses
pointers (generally called references) behind the scenes.

File Types, Anyone?

The last Object Pascal data type constructor covered (briefly) in this chapter is the
file type. File types represent physical disk files, certainly a peculiarity of the origi-
nal Pascal language, given very few old or modern programming languages include
the notion of a file as a primitive data type. The Object Pascal language has a file
keyword, which is a type specifier, like array or record. You use file to define a
new type, and then you can use the new data type to declare new variables:

type
 IntFile = file of Integers;
var
 IntFile1: IntFile;

It is also possible to use the file keyword without indicating a data type, to specify
an untyped file. Alternatively, you can use the TextFile type, defined in the System
unit of the Run Time Library to declare files of ASCII characters (or, more correctly
in these times, files of bytes).

Direct use of files, although still supported, is less and less common these days, as
the Run Time Library includes many classes for managing binary and text files at a
much higher level (including the support for Unicode encodings for text files, for
example). Object Pascal applications generally use the RTL streams (the TStream
and derived classes) to handle any complex file read and write operations. Streams
represent virtual files, which can be mapped to physical files, to a memory block, to
a socket, or any other continuous series of bytes.

One area when you still see some of the old time file management routines in use is
when you write console applications, where you can use write, writeln, read, and
related function for operating with a special file, which is the standard input and
standard output (C and C++ have similar support for input and output from the
console, and many other languages offer similar services).

Marco Cantù, Object Pascal Handbook

06: All About Strings - 157

06: all about

strings

Character strings are one of the most commonly used data types in any program-
ming language. Object Pascal makes string handling fairly simple, yet very fast and
extremely powerful. Even if the basics of strings are easy to grasp and I've used
strings for output in the previous chapters, behind the scenes the situation is a little
more complex than it might seem at first sight. Text manipulation involves several
closely related topics worth exploring: to fully understand string processing you
need to know about Unicode representations, understand how strings map to arrays
of characters, and learn about some of the most relevant string operations of the run
time library, including saving string to text files and loading them.

Object Pascal has several options for string manipulation and makes available dif-
ferent data types and approaches. The focus of the chapter will be on the standard
string data type, but I'll also devote a little time to older string types you can still use
in the desktop compiler (but not in the mobile ones). Before we get to that, though,
let me start from the beginning: the Unicode representation.

Marco Cantù, Object Pascal Handbook

158 - 06: All About Strings

Unicode: An Alphabet for the Entire
World

Object Pascal string management is centered around the Unicode character set and,
particularly, the use of one of its representations, called UTF-16. Before we get to
the technical details of the implementation, it is worth devoting a few sections to
fully understanding the Unicode standard.

The idea behind Unicode (which is what makes it simple and complex at the same
time) is that every single character in all known alphabets of the world has its own
description, a graphical representation, and a unique numeric value (called a Uni-
code code point).

note The reference web site of the Unicode consortium is http://www.unicode.org, which a rich
amount of documents. The ultimate reference is “The Unicode Standard” book, which can be
found at http://www.unicode.org/book/aboutbook.html.

Not all developers are familiar with Unicode, and many still think of characters in
terms of older, limited representations like ASCII and in terms of ISO encoding. By
having a short section covering these older standards, you'd better appreciate the
peculiarities (and the complexity) of Unicode.

Characters from the Past: from ASCII to ISO
Encodings

Character representations started with the American Standard Code for Infor-
mation Interchange (ASCII), which was developed in the early '60s as a
standard encoding of computer characters, encompassing the 26 letters of the
English alphabet, both lowercase and uppercase, the 10 numerical digits, com-
mon punctuation symbols, and a number of control characters (still in use
today).

ASCII uses a 7 bit encoding system to represent 128 different characters. Only char-
acters between #32 (Space) and #126 (Tilde) have a visual representation, as show
in Figure 6.1 (extracted from an Object Pascal application running on Windows).

Marco Cantù, Object Pascal Handbook

06: All About Strings - 159

Figure 6.1:
A table with the
printable ASCII
character set

While ASCII was certainly a foundation (with its basic set of 128 characters that
are still part of the core of Unicode), it was soon superseded by extended ver-
sions that used the 8th bit to add another 128 characters to the set.

Now the problem is that with so many languages around the world, there was no
simple way to figure out which other characters to include in the set (at times
indicated as ASCII-8). To make the story short, Windows adopted a different set
of characters, called a code page, with a set of characters depending on your
locale configuration and version of Windows. Beside Windows code pages there
are many other standards based on a similar paging approach, and those pages
became part of international ISO standards.

The most relevant was certainly the ISO 8859 standard, which defines several
regional sets. The most used set (well, the one used in most Western countries
to be a little more precise) is the Latin set, referenced as ISO 8859-1.

note Even if partially similar, Windows 1252 code page doesn't fully conform to the ISO 8859-1 set.
Windows adds extra characters like the € symbol, extra quotation marks, and more, in the area
from 128 to 150. Differently from all other values of the Latin set, those Windows extensions do
not conform with the Unicode code points.

Unicode Code Points and Graphemes

If I really want to be precise, I should include one more concept beyond that of code
points. At times, in fact, multiple code points could be used to represent a single
grapheme (a visual character). This is generally not a letter, but a combination of
letters or letters and symbols. For example, if you have a sequence of the code point

Marco Cantù, Object Pascal Handbook

160 - 06: All About Strings

representing the Latin letter a (#$0061) followed by the code point representing the
grave accent (#$0300), this should be displayed as a single accented character.

In Object Pascal coding terms, if you write the following (part of the CodePoints
application project), the message will have one single accented character, as in Fig-
ure 6.2.

var
 str: String;
begin
 str := #$0061 + #$0300;
 ShowMessage (str);

Figure 6.2:
A single grapheme can
be the result of
multiple code points

In this case we have two characters, representing two code points, but only one
grapheme (or visual elements). The fact is that while in the Latin alphabet you can
use a specific Unicode code point to represent the given grapheme (letter a with
grave accent is code point $00E0), in other alphabets combining Unicode code
points is the only way to obtain a given grapheme (and the correct output).

Even if the display is that of an accented character, there is no automatic normaliza-
tion or transformation of the value (only a proper display), so the string internally
remains different from one with the single character à.

note The rendering of graphemes from multiple code points might depend on specific support from the
operating system and on text rendering techniques being used, so you might find out that for some
of the graphemes not all operating systems offer the correct output.

From Code Points to Bytes (UTF)

While ASCII used a direct and easy mapping of character to their numeric represen-
tation, Unicode uses a more complex approach. As I mentioned, every element of
the Unicode alphabet has an associated code point, but the mapping to the actual
representation is often more complicated.

Marco Cantù, Object Pascal Handbook

06: All About Strings - 161

One of the elements of confusion behind Unicode is that there are multiple ways to
represent the same code point (or Unicode character numerical value) in terms of
actual storage, of physical bytes, in memory or on a file.

The issue stems from the fact that the only way to represent all Unicode code points
in a simple and uniform way is to use four bytes for each code point. This accounts
for a fixed-length representation (each character requires always the same amount
of bytes), but most developers would perceive this as too expensive in memory and
processing terms.

note In Object Pascal the Unicode Code Points can be represented directly in a 4-bytes representation
by using the UCS4Char data type.

That's why the Unicode standard defines other representations, generally requiring
less memory, but in which the number of bytes for each symbol is different, depend-
ing its code point. The idea is to use a smaller representation for the most common
elements, and a longer one for those infrequently encountered.

The different physical representations of the Unicode code points are called Uni-
code Transformation Formats (or UTF). These are algorithmic mappings, part of
the Unicode standard, that map each code point (the absolute numeric representa-
tion of a character) to a unique sequence of bytes representing the given character.
Notice that the mappings can be used in both directions, converting back and forth
between different representations.

The standard defines three of these formats, depending on how many bits are used
to represent the initial part of the set (the initial 128 characters): 8, 16, or 32. It is
interesting to notice that all three forms of encodings need at most 4 bytes of data
for each code point.

· UTF-8 transforms characters into a variable-length encoding of 1 to 4 bytes.
UTF-8 is popular for HTML and similar protocols, because it is quite compact
when most characters (like tags in HTML) fall within the ASCII subset.

· UTF-16 is popular in many operating systems (including Windows and Mac OS
X) and development environments. It is quite convenient as most characters fit
in two bytes, reasonably compact, and fast to process.

· UTF-32 makes a lot of sense for processing (all code points have the same
length), but it is memory consuming and has limited use in practice.

There is a common misconception that UTF-16 can map directly all code points with
two bytes, but since Unicode defines over 100,000 code points you can easily figure
out they won't fit into 64K elements. It is true, however, that at times developers use
only a subset of Unicode, to make it fit in a 2-bytes-per-characters fixed-length rep-

Marco Cantù, Object Pascal Handbook

162 - 06: All About Strings

resentation. In the early days, this subset of Unicode was called UCS-2, now you
often see it referenced as Basic Multilingual Plane (BMP). However, this is only a
subset of Unicode (one of many planes).

note A problem relating to multi-byte representations (UTF-16 and UTF-32) is which of the bytes
comes first? According to the standard, all forms are allowed, so you can have a UTF-16 BE (big-
endian) or LE (little-endian), and the same for UTF-32. The big-endian byte serialization has the
most significant byte first, the little-endian byte serialization has the least significant byte first.
The bytes serialization is often marked in files along with the UTF representation with a header
called Byte Order Mark (BOM).

The Byte Order Mark

When you have a text file storing Unicode characters, there is a way to indicate
which is the UTF format being used for the code points. The information is stored in
a header or marker at the beginning of the file, called Byte Order Mark (BOM). This
is a signature indicating the Unicode format being used and the byte order form (lit-
tle or big endian – LE or BE). The following table provides a summary of the various
BOMs, which can be 2, 3, or 4 bytes long:

00 00 FE FF UTF-32, big-endian

FF FE 00 00 UTF-32, little-endian

FE FF UTF-16, big-endian

FF FE UTF-16, little-endian

EF BB BF UTF-8

We'll see later in this chapter how Object Pascal manages the BOM within its
streaming classes. The BOM appears at the very beginning of a file with the actual
Unicode data immediately following it. So a UTF-8 file with the content AB contains
five hexadecimal values (3 for the BOM, 2 for the letters):

EF BB BF 41 42

If a text file has none of these signatures, it is generally considered as an ASCII text
file, but it might as well contain text with any encoding.

note On the other hand, when you are receiving data from a web request or through other Internet pro-
tocols, you might have a specific header (part of the protocol) indicating the encoding, rather than
relying on a BOM.

Marco Cantù, Object Pascal Handbook

06: All About Strings - 163

Looking at Unicode

How do we create a table of Unicode characters like those I displayed earlier for
ASCII ones? We can start by displaying code points in the Basic Multilingual Plane
(BMP), excluding what are called surrogate pairs.

note Not all numeric values are true UTF-16 code points, since there are some non-valid numerical val-
ues for characters (called surrogates) used to form a paired code and represent code points above
65535. A good example of a surrogate pair is the symbol used in music scores for the F (or bass)
clef, . It is code point 1D122 which is represented in UTF-16 by two values, D834 followed by
DD22.

Displaying all of the elements of the BMP would requires a 256 * 256 grid, hard to
accommodate on screen. This is why the ShowUnicode application project has a tab
with two pages: The first tab has the primary selector with 256 blocks, while the sec-
ond page shows a grid with the actual Unicode elements, one section at a time. This
program has a little more of a user interface than most others in the book, and you
can simply skim through its code if you are only interested in its output (and not the
internals).

When the program starts, it fills the ListView control in the first page of the Tab-
Control with 256 entries, each indicating the first and last character of a group of
256. Here is the actual code of the OnCreate event handler of the form and a simple
function used to display each element, while the corresponding output is in Figure
6.3:

// helper function
function GetCharDescr (nChar: Integer): string;
begin
 if Char(nChar).IsControl then
 Result := 'Char #' + IntToStr (nChar) + ' []'
 else
 Result := 'Char #' + IntToStr (nChar) +
 ' [' + Char (nChar) + ']';
end;

procedure TForm2.FormCreate(Sender: TObject);
var
 I: Integer;
 ListItem: TListViewItem;
begin
 for I := 0 to 255 do // 256 pages * 256 characters each
 begin
 ListItem := ListView1.Items.Add;
 ListItem.Tag := I;
 if (I < 216) or (I > 223) then
 ListItem.Text :=

Marco Cantù, Object Pascal Handbook

164 - 06: All About Strings

 GetCharDescr(I*256) + '/' + GetCharDescr(I*256+255)
 else
 ListItem.Text := 'Surrogate Code Points';
 end;
end;

Figure 6.3:
The first page of the
ShowUnicode
application project has
a long list of sections of
Unicode characters

Notice how the code saves the number of the “page” in the Tag property of the items
of the ListView, an information used later to fill a page. As a user selects one of the
items, the application moves to the second page of the TabControl, filling its string
grid with the 256 characters of the section:

procedure TForm2.ListView1ItemClick(const Sender: TObject;
 const AItem: TListViewItem);
var
 I, NStart: Integer;
begin
 NStart := AItem.Tag * 256;
 for I := 0 to 255 do
 begin
 StringGrid1.Cells [I mod 16, I div 16] :=
 IfThen (not Char(I + NStart).IsControl, Char (I + NStart), '');

Marco Cantù, Object Pascal Handbook

06: All About Strings - 165

 end;
 TabControl1.ActiveTab := TabItem2;

The IfThen function used in the code above is a two way test: If the condition
passed in the first parameter is true, the function returns the value of the second
parameter; if not, it returns the value of the third one. The test in the first parameter
uses the IsControl method of the Char type helper, to filter out non-printable con-
trol characters.

note The IfThen function operates more or less like the ?: operator of most programming languages
based on the C syntax. There is a version for strings and a separate one for Integers. For the string
version you have to include the System.StrUtils unit, for the Integer version of IfThen the Sys-
tem.SysUtils unit.

The grid of Unicode characters produced by the application is visible in Figure 6.4.
Notice that the output varies depending on the ability of the selected font and the
specific operating system to display a given Unicode character.

Marco Cantù, Object Pascal Handbook

166 - 06: All About Strings

Figure 6.4:
The second page of the
ShowUnicode
application project has
some of the actual
Unicode characters

The Char Type Revisited

After this introduction to Unicode, let's get back to the real topic of this chapter,
which is how the Object Pascal language manages characters and strings. I intro-
duced the Char data type in Chapter 2, and mentioned some of the type helper
functions available in the Character unit. Now that you have a better understanding
of Unicode, it is worth revisiting that section and going though some more details.

First of all, the Char type does not invariably represent a Unicode code point. The
data type, in fact, uses 2 bytes for each element. While it does represent a code point
for elements in Unicode'e Basic Multi-language Plane (BMP), a Char can also be
part of a pair of surrogate values, representing a code point.

Marco Cantù, Object Pascal Handbook

06: All About Strings - 167

Technically, there is a different type you could use to represent any Unicode code
point directly, and this is the UCS4Char type, which used 4 bytes to represent a
value). This type is rarely used, as the extra memory required is generally hard to
justify, but you can see that the Character unit (covered next) also includes several
operations for this data type.

Back to the Char type, remember it is an enumerated type (even if a rather large
one), so it has the notion of sequence and offers code operations like Ord, Inc, Dec,
High, and Low. Most extended operations, including the specific type helper, are not
part of the basic system RTL units but require the inclusion of the Character unit.

Unicode Operations With The Character Unit

Most of the specific operations for Unicode characters (and also Unicode strings, of
course) are defined in a special units called System.Character. This unit defines the
TCharHelper helper for the Char type, which lets you apply operations directly to
variables of that type.

note The Character unit also defines a TCharacter record, which is basically a collection of static class
functions, plus a number of global routines mapped to these method. These are older, deprecated
functions, given that now the preferred way to work on the Char type at the Unicode level is the
use of the class helper.

The unit also defines two interesting enumerated types. The first is called TUnicode-
Category and maps the various characters in broad categories like control, space,
uppercase or lowercase letter, decimal number, punctuation, math symbol, and
many more. The second enumeration is called TUnicodeBreak and defines the fam-
ily of the various spaces, hyphen, and breaks. If you are used to ASCII operations,
this is a big change.

Numbers in Unicode are not only the characters between 0 and 9; spaces are not
limited to the character #32; and so on for many other assumption of the (much
simpler) 256-elements alphabet.

The Char type helper has over 40 methods that comprise many different tests and
operations. They can be used for:

· Getting the numeric representation of the character (GetNumericValue).

· Asking for the category (GetUnicodeCategory) or checking it against one of the
various categories (IsLetterOrDigit, IsLetter, IsDigit, IsNumber, IsControl,
IsWhiteSpace, IsPunctuation, IsSymbol, and IsSeparator). I used the IsCon-
trol operation in the previous demo.

Marco Cantù, Object Pascal Handbook

168 - 06: All About Strings

· Checking if it is lowercase or uppercase (IsLower and IsUpper) or converting it
(ToLower and ToUpper).

· Verifying if it is part of a UTF-16 surrogate pair (IsSurrogate, IsLowSurrogate,
and IsHighSurrogate) and convert surrogate pairs in various ways.

· Converting it to and from UTF32 (ConvertFromUtf32 and ConvertToUtf32) and
UCS4Char type (ToUCS4Char).

· Checking if it is part of a given list of characters (IsInArray).

Notice that some of these operations can be applied to the type as a whole, rather
than to a specific variable. In that can you have to call them using the Char type as
prefix, as in the second code snippet below.

To experiment a bit with these operations on Unicode characters, I've create an
application project called CharTest. One of the examples of this demo is the effect of
calling uppercase and lowercase operations on Unicode elements. In fact, the classic
UpCase function of the RTL works only for the base 26 English language characters
of the ANSI representation, while it fails some Unicode character that do have a
specific uppercase representations (not all alphabets have the concept of uppercase,
so this is not a universal notion).

To test this scenario, in the CharTest application project I've added the following
snippet that tries to convert an accented letter to uppercase:

var
 ch1: Char;
begin
 ch1 := 'ù';
 Show ('UpCase ù: ' + UpCase(ch1));
 Show ('ToUpper ù: ' + ch1.ToUpper);

The traditional Upcase call won't convert the latin accented character, while the
ToUpper function works properly:

UpCase ù: ù
ToUpper ù: Ù

There are many Unicode-related features in the Char type helper, like those high-
lighted in the code below, which defines a string as including also a character
outside of the BMP (the first 64K of Unicode code points). The code snippet, also
part of the CharTest application project, has a few tests on the various elements of
the string, all returning True:

var
 str1: string;
begin
 str1 := '1.' + #9 + Char.ConvertFromUtf32 (128) +
 Char.ConvertFromUtf32($1D11E);
 ShowBool (str1.Chars[0].IsNumber);

Marco Cantù, Object Pascal Handbook

06: All About Strings - 169

 ShowBool (str1.Chars[1].IsPunctuation);
 ShowBool (str1.Chars[2].IsWhiteSpace);
 ShowBool (str1.Chars[3].IsControl);
 ShowBool (str1.Chars[4].IsSurrogate);
end;

The display function used in this case is an adapted version:

procedure TForm1.ShowBool(value: Boolean);
begin
 Show(BoolToStr (Value, True));
end;

note Unicode code point $1D11E is musical symbol G clef.

Unicode Character Literals

We have seen in several examples that you can assign an individual character literal
or a string literal to a variable of the string type. In general using the numeric repre-
sentation of a character with the # prefix is quite simple. There are some exceptions,
though. For backwards compatibility, plain character literals are converted depend-
ing on their context. Take the following simple assignment of the numerical value
128, which probably indicates the use of the Euro currency symbol (€):

var
 str1: string;
begin
 str1 := #$80;

This code is not Unicode compliant, as the code point for that symbol is 8364. The
value, in fact, doesn't come from the official ISO codepages but was a specific
Microsoft implementation for Windows. To make it easier to move existing code to
Unicode, the Object Pascal compiler can treat 2-digit string literals as ANSI charac-
ters (which might depend on your actual code page). Surprisingly enough if you take
that value, convert it to a Char, and display it again... the numerical representation
will change to the correct one. So by executing the statement:

 Show (str1 + ' - ' + IntToStr (Ord (str1[1])));

I'll get the output:

€ - 8364

Given you might prefer fully migrating your code and getting rid of older ANSI-
based literal values, you can change the compiler behavior by using the special
directive $HIGHCHARUNICODE. This directive determines how literal values between
#$80 and #$FF are treated by the compiler. What I discussed earlier is the effect of

Marco Cantù, Object Pascal Handbook

170 - 06: All About Strings

the default option (OFF). If you turn it on, the same program will produce this out-
put:

 - 128

The number is interpreted as an actual Unicode code point and the output will con-
tain a non-printable control character. Another option to express that specific code
point (or any Unicode code point below #$FFFF) is to use the four-digits notation:

 str1 := #$0080;

This is not interpreted as the Euro currency symbol regardless of the setting of the
$HIGHCHARUNICODE directive.

note The code above and the matching demo work only for a US or Western European locale. With
other locales the characters between 128 and 255 are interpreted differently.

What is nice is that you can use the four digits notation to express far eastern char-
acters, like the following two Japanese characters:

 str1 := #$3042#$3044;
 Show (str1 + ' - ' + IntToStr (Ord (str1.Chars[0])) +
 ' - ' + IntToStr (Ord (str1.Chars[1])));

displayed as (along with their Integer representation):

 あい - 12354 – 12356

note あい translates to “meeting” according to BabelFish, but I'm not 100% sure where I originally
found it, and given I don't know Japanese this might well be wrong.

You can also use literal elements over #$FFFF that will be converted to the proper
surrogate pair.

The String Data Type

The string data type in Object Pascal is way more sophisticated than a simple array
of characters, and has features that go well beyond what most programming lan-
guages do with similar data types. In this section I'll introduce the key concepts
behind this data type, and in coming sections we'll explore some of these features in
more details.

Marco Cantù, Object Pascal Handbook

06: All About Strings - 171

In the following bullet list I've captured the key concepts for understanding how
strings work in the language (remember, you can use string without knowing much
of this, as the internal behavior is very transparent):

· Data for the string type is dynamically allocated on the heap. A string vari-
able is just a reference to the actual data. Not that you have to worry much about
this, as the compiler handles this transparently. Like for a dynamic array, as you
declare a new string, this is empty.

· While you can assign data to a string in many ways, you can also allocate a
specific memory area calling the SetLength function. The parameter is the
number of characters (of 2 bytes each), the string should be able to have. When
you extend a string, the existing data is preserved (but it might be moved to a
new physical memory location). When you reduce the size, some of the content
will likely be lost. Setting the length of a string is seldom necessary. The only
common case is when you need to pass a string buffer to an operating system
function for the given platform.

· If you want to increase the size of a string in memory (by concatenating it with
another string) but there is something else in the adjacent memory, then the
string cannot grow in the same memory location, and a full copy of the string
must therefore be made in another location.

· To clear a string you don't operate on the reference itself, but can simply set it to
an empty string, that is ''. Or you can use the Empty constant, which corresponds
to that value.

· According to the rules of Object Pascal, the length of a string (which you can
obtain by calling Length) is the number of valid elements, not the number of allo-
cated elements. Differently from C, which has the concept of a string terminator
(#0), all versions of Pascal since the early days tend to favor the use of a specific
memory area (part of the string) where the actual length information is stored.
At times, however, you'll find strings that also have the terminator.

· Object Pascal strings use a reference-counting mechanism, which keeps track
of how many string variables are referring to a given string in memory. Refer-
ence counting will free the memory when a string isn't used anymore—that is,
when there are no more string variables referring to the data... and the reference
count reaches zero.

· Strings use a copy-on-write technique, which is highly efficient. When you
assign a string to another or pass one to a string parameter, no data is copied and
the reference count in increased. However, if you do change the content of one of
the references, the system will first make a copy and then alter only that copy,
with the other references remaining unchanged.

Marco Cantù, Object Pascal Handbook

172 - 06: All About Strings

· The use of string concatenation for adding content to an existing string is
generally very fast and has no significant drawback. While there are alternative
approaches, concatenating strings is fast and powerful. This is not true for many
programming languages these days.

Now I can guess this description can be a little confusing, so let's look at the use of
strings in practice. In a while I'll get to a demo showcasing some of the operations
above, including reference counting and copy-on-write. Before we do so, however,
let me get back to the string helper operations and some other fundamental RTL
functions for strings management.

Before we proceed further, let me examine some of the elements of the previous list
in terms of actual code. Given string operations are quite seamless it is difficult to
fully grasp what happens, unless you start looking inside the strings memory struc-
ture, which I'll do later in this chapter, as it would be too advanced for now. So let's
start with some simple string operations, extracted from the Strings101 application
project:

var
 String1, String2: string;
begin
 String1 := 'hello world';
 String2 := String1;
 Show ('1: ' + String1);
 Show ('2: ' + String2);
 String2 := String2 + ', again';
 Show ('1: ' + String1);
 Show ('2: ' + String2);
end;

This first snippet, when executed, shows that if you assign two strings to the same
content, modifying one won't affect the other. That is, String1 is not affected by the
changes to String2:

1: hello world
2: hello world
1: hello world
2: hello world, again

Still, as we'll figure out better in a later demo, the initial assignment doesn't cause a
full copy of the string, the copy is delayed (again, a feature called copy-on-write).

Another important feature to understand is how the length is managed. If you ask
for the length of a string, you get the actual value (which is stored in the string
metadata, making the operation very fast). But if you call SetLength, you are allo-
cating memory, which most often will be not initialized. This is generally used when
passing the string as a buffer to an external system function. If you need a blank
string, instead, you can use the pseudo-constructor (Create). Finally, you can use
SetLength to trim a string. All of these are demonstrated by the following code:

Marco Cantù, Object Pascal Handbook

06: All About Strings - 173

var
 string1: string;
begin
 string1 := 'hello world';
 Show(string1);
 Show ('Length: ' + string1.Length.ToString);

 SetLength (string1, 100);
 Show(string1);
 Show ('Length: ' + string1.Length.ToString);

 string1 := 'hello world';
 Show(string1);
 Show ('Length: ' + string1.Length.ToString);

 string1 := string1 + string.Create(' ', 100);
 SetLength (string1, 100);
 Show(string1);
 Show ('Length: ' + string1.Length.ToString);

The output is more or less the following:

hello world
Length: 11

hello world~~~~ ~ Η~υ~ ~ Ј~Щ~ы~ ~ ~ ~ ~ ~ ~ ~ ~ʹ ϧ ѭ ҏ ұ Ә Ӽ ԟ Շ հ ~٦~گ~ۓ~٦~ֳ~ו~~؛~ف~
ߊ~ޤ~ޤ~ݡ~ޤ~ޤ~~߰~~~~~ܼ~۵ ~ ~ ~⌇ 〈

Length: 100
hello world
Length: 11
hello world
Length: 100

The third concept I want to underline in this section is that of an empty string. A
string is empty when its content is an empty string. For both assignment and testing
you can use two consecutive quotes, or specific functions:

var
 string1: string;
begin
 string1 := 'hello world';
 if string1 = '' then
 Show('Empty')
 else
 Show('Not empty');

 string1 := ''; // or string1.Empty;
 if string1.IsEmpty then
 Show('Empty')
 else
 Show('Not empty');

With this simple output:

Not empty
Empty

Marco Cantù, Object Pascal Handbook

174 - 06: All About Strings

Passing Strings as Parameters

As I've explained, if you assign a string to another, you are just copying a reference,
while the actual string in memory is not duplicated. However, if you write code that
changes that string (and only at that point) the string is first copied, and than modi-
fied.

Something very similar happens when you pass a string as parameter to a function
or procedure. By default, you get a new reference and if you modify the string in the
function, the change doesn't affect the original string. If you want a different behav-
ior, that is the ability to modify the original string in the function, you need to pass
the string by reference, using the var keyword (as it happens for most other simple
and managed data types).

But what if you don't modify the string passed as parameter? In that case, you can
apply an actual optimization by using the const modifier for the parameter. In this
case the compiler won't let you change the string in the function or procedure, but it
will also optimize the parameter passing operation. In fact, a const string doesn't
require the function to increase the string reference count when it starts and
decrease it when it ends. While these operations are very fast, executing those thou-
sands or millions of times will add a slight overhead to your programs. This is why
passing string as const is recommended in cases where the function doesn't have to
modify the value of the string parameter.

In coding terms, these are the declarations of three procedures with a string param-
eters passed in different ways:

procedure ShowMsg1 (str: string);
procedure ShowMsg2 (var str: string);
procedure ShowMsg3 (const str: string);

The Use of [] and String Characters Counting
Modes

As you are likely to know if you have used Object Pascal or any other programming
language, a key string operation is accessing one of the elements of a string, some-
thing often achieved using the square brackets notation ([]), in the same way you
access to the elements of an array.

In Object Pascal there are two slightly different ways to perform these operations:

· The Chars[] string type helper operation (the entire list is in the next section) is
a read only character access that uses a 0-based index.

Marco Cantù, Object Pascal Handbook

06: All About Strings - 175

· The standard [] string operator supports both reading and writing, and can use
either a zero-based or a one-based index depending on a compiler setting.

This is a bit confusing, at first, and does require some clarification, which I'm going
to provide after a short historical note. The reason for this note, which you can skip
if not interested, is that it would be difficult to understand why the language
behaves in the current way without looking at what happened over time.

note Let me look back in time for a second, to explain you how we got here today. In the early days of
the Pascal language, strings were treated like an array of characters in which the first element
(that is the 0th element of the array) was used to store the number of valid characters in the
string, or the string length. In those days, while the C language had to recompute the length of a
string each time, looking for a terminator, Pascal code could just make a direct check to that byte.
Given that the byte number 0 was used for the length, it happened that the first actual character
stored in the string was at position 1. Over time, almost all other languages had zero-based strings
and arrays. Later, Object Pascal adopted 0-based dynamic arrays and most of the RTL and com-
ponent libraries used 0-based data structures, with strings being a significant exception. While
moving to the mobile world, the Object Pascal language designers decided to give “priority” to
zero-based strings, allowing developers to still use the older model in case they had existing Object
Pascal source code to move over. Needless to say this generated a lot of debate in the developer
community.

If we want to draw a comparison to better explain the differences in the base of the
index, consider how floors are counted in Europe and in North America (I honestly
don't know about the rest of the world). In Europe the ground floor is floor 0, and
the first floor is the one above it (at times formally indicated as “floor one above
ground”). In North America, the first floor is the ground floor, and the second first
is the first above ground level. In other words, America uses a 1-based floor index,
while Europe uses a 0-based floor index. For strings, instead, the largest majority of
programming languages uses the 0-based notation, regardless of the continent they
were invented.

Let me explain the situation with string indexes a little better. As I mentioned
above, the Chars[] notation invariably uses a zero-based index. So if you write

var
 string1: string;
begin
 string1 := 'hello world';
 Show (string1.Chars[1]);

the output will be:

e

What if you use the direct [] notation, that is what will be the output of:

 Show (string1[1]);

Marco Cantù, Object Pascal Handbook

176 - 06: All About Strings

This might be either h or e, depending on a compiler define, $ZEROBASEDSTRING. If
this is ON the output will be e, if it is OFF the output will be h. Now given this setting
was introduced for backwards compatibility, the mobile compiler has it set to ON by
default, while the Windows compiler has it set to OFF. How can we handle this dis-
crepancy? There are a few alternative options:

· For new applications, my suggestion is to enable zero-based strings setting for all
of your code (at the project options level) including the desktop code, and follow
the standard approach used by most programming languages.

· If you have existing code, tested and verified, currently working with the classic
Pascal 1-based notation, bring this over the mobile by disabling the compiler flag
for all platforms.

· Make sure your code works in both cases, by abstracting the index, for example
using Low(string) as the index of the first value. This works returning the
proper value depending on the local compiler setting for the string base. How-
ever, while this makes sense for libraries you want to keep readable and usable
regardless of the compiler setting (like the RTL libraries), it requires some extra
work which is not really required at the application level.

While implementing the first and second strategy is relatively simple, implementing
code that works regardless of this setting takes a little effort. I did this in the section
covering the for loop, for example, when I wrote:

var
 s: string;
 I: Integer;
begin
 s := 'Hello world';
 for I := Low (s) to High (s) do
 Show(s[I]);

In other words, a string invariably has elements ranging from the result of the Low
function to that of the High function applied to the same string. If you want to know,
in general, which is the active compiler setting, you can use:

Low (string)

This returns either 0 or 1 depending on the active option. In any case, always keep
in mind that this is just a local compiler setting that determines how the index
within square brackets is interpreted.

note A string is just a string, and the concept of a zero-based string is completely wrong. The data struc-
ture in memory is not different in any way, so you can pass any string to any function that uses a
notation with any base value, and there is no problem at all. In other words, if you have a code
fragment accessing to strings with a zero-based notation you can pass the string to a function that
is compiled using the settings for a one-based notation.

Marco Cantù, Object Pascal Handbook

06: All About Strings - 177

Concatenating Strings

I have already mentioned that unlike other languages, Object Pascal has full support
for direct string concatenation, which is actually a rather fast operation. In this
chapter I'll just show you some string concatenations code, while doing some speed
testing. Later on, in Chapter 18, I'll briefly cover the TStringBuilder class, which
follows the .NET notation for assembling a string out of different fragments. While
there are reasons to use TStringBuilder, performance is not the most relevant one
(as the following example will show).

So, how do we concatenate strings in Object Pascal? Simply by using the + operator:

var
 str1, str2: string;
begin
 str1 := 'Hello,';
 str2 := ' world';
 str1 := str1 + str2;

Notice how I used the str1 variable both on the left and on the right of the assign-
ment, adding some more content to an existing string rather than assigning to a
brand new one. Both operations are possible, but adding content to an existing
string is where you can get some nice performance.

This type of concatenation can be also done in a loop, like the following extracted
from the LargeString application project:

uses
 Diagnostics;

const
 MaxLoop = 2000000; // two million

var
 str1, str2: string;
 I: Integer;
 t1: TStopwatch;
begin
 str1 := 'Marco ';
 str2 := 'Cantu ';

 t1 := TStopwatch.StartNew;
 for I := 1 to MaxLoop do
 str1 := str1 + str2;

 t1.Stop;
 Show('Length: ' + str1.Length.ToString);
 Show('Concatenation: ' + t1.ElapsedMilliseconds.ToString);
end;

Marco Cantù, Object Pascal Handbook

178 - 06: All About Strings

By running this code, I get the following timing on a Windows virtual machines and
on an Android device (the computer is quite a bit faster):

// Windows (in a VM)
Length: 12000006
Concatenation: 59

// Android (Nexus 4)
Length: 12000006
Concatenation: 991

The application project has also similar code based on the TStringBuilder class.
While I don't want to get to the details of that code (again, I'll describe the class in
Chapter 18) I want to share the actual timing, for comparison with the plain con-
catenation timing just displayed

// Windows (in a VM)
Length: 12000006
StringBuilder: 79

// Android (Nexus 4)
Length: 12000006
StringBuilder: 1057

As you can see, concatenation can be safely considered the fastest option.

The String Helper Operations

Given the importance of the string type, it should come to no surprise that the
helper for this type has a rather long list of operations you can perform. And given
its importance and the commonality of these operations in most applications, I
think it is worth going through this list with some care.

I've logically grouped the string helper operations (most of which have many over-
loaded versions), shortly describing what they do, considering that quite often that
their names are rather intuitive:

· Copy or partial copy operations like Copy, CopyTo, Join, and SubString

· String modification operations like Insert, Remove, and Replace

· For conversion from various data types to string, you can use Parse and Format

· Conversion to various data types, when possible can be achieved using
ToBoolean, ToInteger, ToSingle, ToDouble, and ToExtended while you can turn
a string into an array of characters with ToCharArray

Marco Cantù, Object Pascal Handbook

06: All About Strings - 179

· Fill a string white space or specific characters with PadLeft, PadRight, and one of
the overloaded versions of Create. At the opposite, you can remove white space
at one end of the string or both using TrimRight, TrimLeft, and Trim

· String comparison and equality test (Compare, CompareOrdinal, CompareText,
CompareTo, and Equals)—but keep in mind you can also, to some extent, use the
equality operator and the comparison operators

· Changing case with LowerCase and UpperCase, ToLower and ToUpper, and ToUp-
perInvariant

· Test the string content with operations like Contains, StartsWith, EndsWith.
Search in the string can be done using IndexOf for finding the position of a given
character (from the beginning or from a given location), the similar IndexOfAny
(which looks for one of the elements of an array of characters), the LastIndexOf
and LastIndexOfAny operations which work backwards from the end of the
string, and the special purpose operations IsDelimiter and LastDelimiter

· Access to general information about the string with functions like Length, which
returns the number of characters, CountChars, which also takes surrogate pairs
into account, GetHashCode, which returns a hash of the string, and the various
tests for “emptiness” which include IsEmpty, IsNullOrEmpty, and IsNullOr-
WhiteSpace

· String special operations like Split, which breaks a string into multiple ones
based on a specific character, and removing or adding quotes around the string
with QuotedString and DeQuoted

· And, finally, access to individual characters with Chars[], which has the numeri-
cal index of the element of the string among square brackets. This can be used
only for reading a value (not for changing it) and uses a zero-based index like all
other string helper operations.

It is important to notice, in fact, that all of the string helper methods have been
build following the string convention used by many other languages, which includes
the concept that string elements start with zero and go up to the length of the string
minus one. In other words, all string helper operations use zero-based indexes as
parameters and return values.

note The Split operation is relatively new to the Object Pascal RTL. A previously common approach
was loading a string in a string list, after setting a specific line separator, and later access the indi-
vidual strings, or lines. The Split operation is significantly more efficient and flexible.

Given the large amount of operations you can apply directly to strings, I could have
created several projects demonstrating these capabilities. Instead, I'll stick to a few
relatively simple operations, albeit very common ones.

Marco Cantù, Object Pascal Handbook

180 - 06: All About Strings

The StringHelperTest application project has two buttons. In each of them the first
part of the code builds and displays a string:

var
 Str1, Str2: string;
 I, NIndex: Integer;
begin
 Str1 := '';

 // create string
 for I := 1 to 10 do
 Str1 := Str1 + 'Object ';

 Str2:= string.Copy (Str1);
 Str1 := Str2 + 'Pascal ' + Str2.Substring (10, 30);
 Show(Str1);

Noticed how I used the Copy function, to create a unique copy of the data of the
string, rather than an alias... even if in this particular demo it won't have made any
difference. The Substring call at the end is used to extract a portion of the string.
The resulting text is:

Object Object Object Object Object Object Object Object Object Object
Pascal ect Object Object Object Objec

After this initialization, the first button has code for searching for a substring and
for repeating such a search, with a different initial index, to count the occurrences of
a given string (in the example a single character):

 // find substring
 Show('Pascal at: ' +
 Str1.IndexOf ('Pascal').ToString);

 // count occurrences
 I := -1;
 NCount := 0;
 repeat
 I := Str1.IndexOf('O', I + 1); // search from next element
 if I >= 0 then
 Inc (NCount); // found one
 until I < 0;

 Show('O found: ' +
 NCount.ToString + ' times');

I know the repeat loop is not the simplest one: it starts with a negative index, as any
following search begins with the index after the current one; it counts occurrences;
and its termination is based on the fact that if the element is not found it returns -1.
The output of the code is:

Pascal at: 70
O found: 14 times

Marco Cantù, Object Pascal Handbook

06: All About Strings - 181

The second button has code to perform a search and replace one or more elements
of a string with something else. In the first part, it creates a new string copying the
initial and final part and adding some new text in the middle. In the second, it uses
the Replace function that can operate on multiple occurrences simply by passing to
it the proper flag (rfReplaceAll).

This is the code:

 // single replace
 nIndex := str1.IndexOf ('Pascal');
 str1 := str1.Substring(0, nIndex) + 'Object' +
 str1.Substring(nIndex + ('Pascal').Length);
 Show (str1);

 // multi-replace
 str1 := str1.Replace('O', 'o', [rfReplaceAll]);
 Show (str1);

As the output is rather long and not easy to read, here I've listed only the central
portion of each string:

...Object Pascal ect Object Object...

...Object Object ect Object Object...

...object object ect object object...

Again, this is just a minimal sampler of the rich string operations you can perform
using the operations available for the string type using the string type helper.

More String RTL

An effect of the decision to implement the string helper following the names of
operations common in other programming languages is the fact that the names of
the type operations often diverge from the traditional Object Pascal ones (which are
still available as global functions today.

The following table has some of the not-matching functions names:

global string type helper
Pos IndexOf
IntToStr Parse
StrToInt ToInteger
CharsOf Create
StringReplace Replace

note Remember that there is a big difference between the global and the Char helper operations: The
first group uses a one-based notation for indexing elements within a string, while the latter group
uses a zero-based notation (as explained earlier).

Marco Cantù, Object Pascal Handbook

182 - 06: All About Strings

These are only the most commonly used functions of the string RTL that have
changed name, while many others still use the same like UpperCase or Quoted-
String. The System.SysUtils unit has a lot more, and the specific System.StrUtils
unit has also many functions focused on string manipulation that are not part of the
string helper.

Some notable functions part of the System.StrUtils unit are:

· ResemblesText, which implements a Soundex algorithm (finding words with
similar sound even if a different spelling);

· DupeString, which returns the requested number of copies of the given string;

· IfThen, which returns the first string passed if a condition is true, else it will
return the second string (I used this function in a code snippet earlier in this
chapter);

· ReserveString, which returns a string with the opposite characters sequence.

Formatting Strings

While concatenating string with the plus (+) operator and using some of the conver-
sion functions you can indeed build complex strings out of existing values of various
data types, there is a different and more powerful approach to formatting numbers,
currency values, and other strings into a final string. Complex string formatting can
be achieved by calling the Format function, a very traditional but still extremely
common mechanism, not only in Object Pascal but in most programming lan-
guages.

note The family of “print format string” or printf functions date back to the early days of program-
ming and languages like FORTRAN 66, PL/1, and ALGOL 68. The specific format string structure
still in use today (and used by Object Pascal) is close to the C language printf function. For a his-
torical overview you can refer to en.wikipedia.org/wiki/Printf_format_string.

The Format function requires as parameters a string with the basic text and some
placeholders (marked by the % symbol) and an array of values, generally one for
each of the placeholders. For example, to format two numbers into a string you can
write:

Format ('First %d, Second %d', [n1, n2]);

where n1 and n2 are two Integer values. The first placeholder is replaced by the first
value, the second matches the second, and so on. If the output type of the place-
holder (indicated by the letter after the % symbol) doesn't match the type of the

Marco Cantù, Object Pascal Handbook

06: All About Strings - 183

corresponding parameter, a runtime error occurs. Having no compile-time type
checking is actually the biggest drawback of using the Format function. Similarly,
not passing enough parameters causes a runtime error.

The Format function uses an open-array parameter (a parameter that can have an
arbitrary number of values or arbitrary data types, as covered in Chapter 5). Besides
using %d, you can use one of many other placeholders defined by this function and
briefly listed the following table. These placeholders provide a default output for the
given data type. However, you can use further format specifiers to alter the default
output. A width specifier, for example, determines a fixed number of characters in
the output, while a precision specifier indicates the number of decimal digits. For
example,

Format ('%8d', [n1]);

converts the number n1 into an eight-character string, right-aligning the text (use
the minus (-) symbol to specify left-justification) filling it with white spaces. Here is
the list of formatting placeholders for the various data types:

d (decimal) The corresponding integer value is converted to a string of deci-
mal digits.

x (hexadecimal) The corresponding integer value is converted to a string of
hexadecimal digits.

p (pointer) The corresponding pointer value is converted to a string
expressed with hexadecimal digits.

s (string) The corresponding string, character, or PChar (pointer to a
character array) value is copied to the output string.

e (exponential) The corresponding floating-point value is converted to a string
based on scientific notation.

f (floating point) The corresponding floating-point value is converted to a string
based on floating point notation.

g (general) The corresponding floating-point value is converted to the
shortest possible decimal string using either floating-point or
exponential notation.

n (number) The corresponding floating-point value is converted to a float-
ing-point string but also uses thousands separators.

m (money) The corresponding floating-point value is converted to a string
representing a currency amount. The conversion is generally
based on regional settings.

The best way to see examples of these conversions is to experiment with format
strings yourself. To make this easier I've written the FormatString application
project, which allows a user to provide formatting strings for a few predefined inte-
ger values.

Marco Cantù, Object Pascal Handbook

184 - 06: All About Strings

The form of the program has an edit box above the buttons, initially holding a sim-
ple predefined formatting string acting as a placeholder ('%d - %d - %d'). The first
button of the application lets you display a more complex sample format string in
the edit box (the code has a simple assignment to the edit text of the format string
'Value %d, Align %4d, Fill %4.4d'). The second button lets you apply the for-
mat string to the predefined values, using the following code:

var
 strFmt: string;
 n1, n2, n3: Integer;
begin
 strFmt := Edit1.Text;
 n1 := 8;
 n2 := 16;
 n3 := 256;

 Show (Format ('Format string: %s', [strFmt]));
 Show (Format ('Input data: [%d, %d, %d]', [n1, n2, n3]));
 Show (Format ('Output: %s', [Format (strFmt, [n1, n2, n3])]));
 Show (''); // blank line
end;

If you display the output first with the initial format string and next with the sample
format string (that is if you press the second button, the first, and than the second
again), you should get an output like the following:

Format string: %d - %d - %d
Input data: [8, 16, 256]
Output: 8 - 16 - 256

Format string: Value %d, Align %4d, Fill %4.4d
Input data: [8, 16, 256]
Output: Value 8, Align 16, Fill 0256

However the idea behind the program is to edit the format string and experiment
with it, to see all of the various available formatting options.

The Internal Structure of Strings

While you can generally use strings without knowing much about their internals, it
is interesting to have a look to the actual data structure behind this data type. In the
early days of the Pascal language, strings had a maximum of 255 elements of one
byte each and would use the first byte (or zero byte) for storing the string length. A
lot of time has passed since those early days, but the concept of having some extra
information about the string stored as part of its data remains a specific approach of
the Object Pascal language (unlike many languages that derive from C and use the
concept of a string terminator).

Marco Cantù, Object Pascal Handbook

06: All About Strings - 185

note ShortString is the name of the traditional Pascal string type, a string of one byte characters or
AnsiChar limited to 255 characters. The ShortString type is still available in the desktop compil-
ers, but not in the mobile ones. You can represent a similar data structure with a dynamic array of
bytes, or TBytes, or a plain static arrays of Byte elements.

As I already mentioned, a string variable is nothing but a pointer to a data structure
allocated on the heap. Actually, the value stored in the string is not a reference to
the beginning of the data structure, but a reference to the first of the characters of
the string, with string metadata data available at negative offsets from that location.
The in-memory representation of the data of the string type is the following:

-12 -10 -8 -4 String reference address

Code page Elem size Ref count Length First char of string

The first element (counting backwards from the beginning of the string itself) is an
Integer with the string length, the second element holds the reference count. Fur-
ther fields (used on desktop compilers) are the element size in bytes (either 1 or 2
bytes) and the code page for older Ansi-based string types (available on the desktop
compilers).

Quite surprisingly, it is possible to access to most of these fields with specific low-
level string metadata functions, beside the rather obvious Length function:

function StringElementSize(const S: string): Word;
function StringCodePage(const S: string): Word;
function StringRefCount(const S: string): Longint;

As an example, you can create a string and ask for some information about it, as I
did in the StringMetaTest application project:

var
 str1: string;
begin
 str1 := 'F' + string.Create ('o', 2);

 Show ('SizeOf: ' + SizeOf (str1).ToString);
 Show ('Length: ' + str1.Length.ToString);
 Show ('StringElementSize: ' +
 StringElementSize (str1).ToString);
 Show ('StringRefCount: ' +
 StringRefCount (str1).ToString);
 Show ('StringCodePage: ' +
 StringCodePage (str1).ToString);
 if StringCodePage (str1) = DefaultUnicodeCodePage then
 Show ('Is Unicode');
 Show ('Size in bytes: ' +
 (Length (str1) * StringElementSize (str1)).ToString);
 Show ('ByteLength: ' +
 ByteLength (str1).ToString);

Marco Cantù, Object Pascal Handbook

186 - 06: All About Strings

note There is a specific reason the program builds the 'Foo' string dynamically rather than assigning a
constant, and that is because constant strings have the reference count disabled (or set to -1). In
the demo I preferred showing a proper value for the reference count, hence the dynamic string
construction.

This program produces output similar to the following when running on Windows:

SizeOf: 4
Length: 3
StringElementSize: 2
StringRefCount: 1
StringCodePage: 1200
Is Unicode
Size in bytes: 6
ByteLength: 6

The following is the output if you run the same program on Android:

SizeOf: 4
Length: 3
StringElementSize: 2
StringRefCount: 1
StringCodePage: 1200
Is Unicode
Size in bytes: 6
ByteLength: 6

The code page returned by a UnicodeString is 1200, a number stored in the global
variable DefaultUnicodeCodePage. In the code above (and its output) you can
clearly notice the difference between the size of a string variable (invariably 4), the
logical length, and the physical length in bytes.

This can be obtained by multiplying the size in bytes of each character times the
number of characters, or by calling ByteLength. This latter function, however,
doesn't support some of the string types of the older desktop compiler.

Looking at Strings in Memory

The ability to look into a string's metadata can be used to better understand how
string memory management works, particularly in relationship with the reference
counting. For this purpose, I've added some more code to the StringMetaTest
application project.

The program has two global strings: MyStr1 and MyStr2. The program assigns a
dynamic string to the first of the two variables (for the reason explained earlier in
the note) and then assigns the second variable to the first:

 MyStr1 := string.Create(['H', 'e', 'l', 'l', 'o']);

Marco Cantù, Object Pascal Handbook

06: All About Strings - 187

 MyStr2 := MyStr1;

Besides working on the strings, the program shows their internal status, using the
following StringStatus function:

function StringStatus (const Str: string): string;
begin
 Result := 'Addr: ' +
 IntToStr (Integer (Str)) +
 ', Len: ' +
 IntToStr (Length (Str)) +
 ', Ref: ' +
 IntToStr (PInteger (Integer (Str) - 8)^) +
 ', Val: ' + Str;
end;

It is important in the StringStatus function to pass the string parameter as a const
parameter. Passing this parameter by copy will cause the side effect of having one
extra reference to the string while the function is being executed. By contrast, pass-
ing the parameter via a reference (var) or constant (const) doesn't imply a further
reference to the string. In this case I've used a const parameter, as the function is
not supposed to modify the string.

To obtain the memory address of the string (useful to determine its actual identity
and to see when two different strings refer to the same memory area), I've simply
made a hard-coded typecast from the string type to the Integer type. Strings are ref-
erences-in practice, they're pointers: Their value holds the actual memory location
of the string not the string itself.

The code used for testing what happens to the string is the following:

 Show ('MyStr1 - ' + StringStatus (MyStr1));
 Show ('MyStr2 - ' + StringStatus (MyStr2));
 MyStr1 [1] := 'a';
 Show ('Change 2nd char');
 Show ('MyStr1 - ' + StringStatus (MyStr1));
 Show ('MyStr2 - ' + StringStatus (MyStr2));

Initially, you should get two strings with the same content, the same memory loca-
tion, and a reference count of 2.

MyStr1 - Addr: 51837036, Len: 5, Ref: 2, Val: Hello
MyStr2 - Addr: 51837036, Len: 5, Ref: 2, Val: Hello

As the application changes the value of one of the two strings (it doesn't matter
which one), the memory location of the updated string will change. This is the effect
of the copy-on-write technique. This is the second part of the output:

Change 2nd char
MyStr1 - Addr: 51848300, Len: 5, Ref: 1, Val: Hallo
MyStr2 - Addr: 51837036, Len: 5, Ref: 1, Val: Hello

Marco Cantù, Object Pascal Handbook

188 - 06: All About Strings

You can freely extend this example and use the StringStatus function to explore
the behavior of long strings in many other circumstances, with multiple references,
when they are passed as parameters, assigned to local variables, and more.

Strings and Encodings

As we have seen the string type in Object Pascal is mapped to the Unicode UTF-16
format, with 2-bytes per element and management of surrogate pairs for code
points outside of the BMP (Basic Multi-language Plane).

There are many cases, though, in which you need to save to file, load from file,
transmit over a socket connection, or receive textual data from a connection that
uses a different representation, like ANSI or UTF-8.

To convert files and in memory data among different formats (or encodings), the
Object Pascal RTL has a handy TEncoding class, defined in the System.SysUtils
unit along with several inherited classes.

note There are several other handy classes in the Object Pascal RTL that you can use for reading and
writing data in text formats. For example, the TStreamReader and TStreamWriter classes offer
support for text files with any encoding. These classes will be introduced in Chapter 18.

Although I still haven't introduced classes and inheritance, this set of encoding
classes is very easy to use, as there is already a global object for each encoding, auto-
matically created for you.

In other words, an object of each of these encoding classes is available within the
TEncoding class, as a class property:

type
 TEncoding = class
 ...
 public
 class property ASCII: TEncoding read GetASCII;
 class property BigEndianUnicode: TEncoding
 read GetBigEndianUnicode;
 class property Default: TEncoding read GetDefault;
 class property Unicode: TEncoding read GetUnicode;
 class property UTF7: TEncoding read GetUTF7;
 class property UTF8: TEncoding read GetUTF8;

Marco Cantù, Object Pascal Handbook

06: All About Strings - 189

note The Unicode encoding is based on the TUnicodeEncoding class that uses the same UTF-16 LE
(Little Endian) format used by the string type. The BigEndianUnicode, instead, uses the less com-
mon Big Endian representation. If you are not familiar with “Endianness” this is a terms used to
indicate the sequence of two bytes making a code point (or any other data structure). Little Endian
has the most significant byte first, and Big Endian has the most significant byte last. For more
information, see en.wikipedia.org/wiki/Endianness.

Again, rather than exploring these classes in general, something a little difficult at
this point of the book, let's focus on a couple of practical examples. The TEncoding
class has methods for reading and writing Unicode strings to byte arrays, perform-
ing appropriate conversions.

To demonstrate UTF format conversions via TEncoding classes, but also to keep my
example simple and focused and avoid working with the file system, in the Encod-
ingsTest application project I've created an UTF-8 string in memory using some
specific data, and converted it to UTF-16 with a single function call:

var
 Utf8string: TBytes;
 Utf16string: string;
begin
 // process Utf8data
 SetLength (Utf8string, 3);
 Utf8string[0] := Ord ('a'); // single byte ANSI char < 128
 Utf8string[1] := $c9; // double byte, reversed latin a
 Utf8string[2] := $90;
 Utf16string := TEncoding.UTF8.GetString(Utf8string);
 Show ('Unicode: ' + Utf16string);

The output should be:

Unicode: aɐ

Now to better understand the conversion and the difference in the representations,
I've added the following code:

 Show ('Utf8 bytes:');
 for AByte in Utf8String do
 Show (AByte.ToString);

 Show ('Utf16 bytes:');
 UniBytes := TEncoding.Unicode.GetBytes (Utf16string);
 for AByte in UniBytes do
 Show (AByte.ToString);

This code produces a memory dump, with decimal values, for the two representa-
tions of the string, UTF-8 (a one byte and a two byte code point) and UTF-16 (with
both code points being 2 bytes):

Utf8 bytes:
97
201

Marco Cantù, Object Pascal Handbook

190 - 06: All About Strings

144
Utf16 bytes:
97
0
80
2

Notice that direct character to byte conversion, for UTF-8, work only for ANSI-7
characters, that is values up to 127. For higher level ANSI characters there is no
direct mapping and you must perform a conversion, using the specific encoding
(which will however fail on multi-byte UTF-8 elements). So both of the following
produce wrong output:

 // error: cannot use char > 128
 Utf8string[0] := Ord ('à');
 Utf16string := TEncoding.UTF8.GetString(Utf8string);
 Show ('Wrong high ANSI: ' + Utf16string);
 // try different conversion
 Utf16string := TEncoding.ANSI.GetString(Utf8string);
 Show ('Wrong double byte: ' + Utf16string);

 // output
 Wrong high ANSI:
 Wrong double byte: àÉ

 The encoding classes let you convert in both directions, so in this case I'm convert-
ing from UTF-16 to UTF-8, doing some processing of the UTF-8 string (something
to be done with care, given the variable length nature of this format), and convert
back to UTF-16:

var
 Utf8string: TBytes;
 Utf16string: string;
 I: Integer;
begin
 Utf16string := 'This is my nice string with à and Æ';
 Show ('Initial: ' + Utf16string);

 Utf8string := TEncoding.UTF8.GetBytes(Utf16string);
 for I := 0 to High(Utf8string) do
 if Utf8string[I] = Ord('i') then
 Utf8string[I] := Ord('I');
 Utf16string := TEncoding.UTF8.GetString(Utf8string);
 Show ('Final: ' + Utf16string);

The output is:

Initial: This is my nice string with à and Æ
Final: ThIs Is my nIce strIng wIth à and Æ

Marco Cantù, Object Pascal Handbook

06: All About Strings - 191

Other Types for Strings

While the string data type is by far the most common and largely used type for rep-
resenting strings, Object Pascal desktop compilers had and still have a variety of
string types. Some of these types can be used also on mobile applications, where you
can also just use TBytes directly to manipulate string with a 1-byte representation,
as in the application project described in the last section.

While developers who used Object Pascal in the past might have a lot of code based
on these pre-Unicode types (or directly managing UTF-8), modern applications
really require full Unicode support. Also while some types, like UTF8String, are
available in the desktop compilers and also in the mobile ones, their support in
terms of RTL is limited. The recommendation is to use plain and standard Unicode
strings.

note There has been a lot of discussion and criticism about the original lack of native types like
AnsiString and UTF8String in the Object Pascal mobile compilers. In Delphi 10.1 Berlin the
UTF8String type and the low-level RawByteString type have been officially re-introduced. It is still
worth considering that there is almost no other programming language out there that has more
than one native or intrinsic string type. Multiple string types are more complex to master, can
cause unwanted side effects (like extensive automatic conversion calls that slow down programs),
and cost a lot for the maintenance of multiple versions of all of the string management and pro-
cessing functions.

The UCS4String type

An interesting but little used string type is the UCS4String type, available on all
compilers. This is just an UTF32 representation of a string, and no more than an
array of UTF32Char elements, or 4-bytes characters. The reason behind this type, as
mentioned earlier, is that is offers a direct representation of all of the Unicode code
points. The obvious drawback is such a string takes twice as much memory than a
UTF-16 string (which already takes twice as much than an ANSI string).

Although this data type can be used in specific situations, it is not particularly suited
for general circumstances. Also, this types doesn't support copy-on-write nor has
any real system functions and procedures for processing it.

note Whilst the UCS4String guarantees one UTF32Char per Unicode code point, it cannot guarantee
one UTF32Char per grapheme, or “visual character”.

Marco Cantù, Object Pascal Handbook

192 - 06: All About Strings

Older String Types

As mentioned, the desktop versions of the Object Pascal compilers offer support for
some older, traditional string types. Some of these string types have been made
available also in the mobile compilers starting with Delphi 10.1 Berlin. These older
string types include:

· The ShortString type, which corresponds to the original Pascal language string
type. These strings have a limit of 255 characters. Each element of a short string
is of type ANSIChar (a type also available only in desktop compilers). Available on
desktop compilers only.

· The ANSIString type, which corresponds to variable-length strings. These strings
are allocated dynamically, reference counted, and use a copy-on-write technique.
The size of these strings is almost unlimited (they can store up to two billion
characters!). Also this string type is based on the ANSIChar type. Available on
desktop compilers only, given the ANSI representation is specific to Windows.

· The WideString type is similar to a 2-bytes Unicode string in terms of represen-
tation, is based on the Char type, but unlike the standard string type is doesn't
use copy-on-write and it is less efficient in terms of memory allocation. If you
wonder why it was added to the language, the reason was for compatibility with
string management in Microsoft's COM architecture. Available on desktop com-
pilers only.

· UTF8String is a string based on the variable character length UTF-8 format. As I
mentioned there is little run-time library support for this type. Available both on
desktop and mobile compilers, where it can be used for direct manipulation of
UTF8 string data.

· RawByteString is an array of characters with no code page set, on which no char-
acter conversion is ever accomplished by the system (thus logically resembling a
TBytes structure, but allowing some direct string operations that an array of
bytes currently lacks). Available both on desktop and mobile compilers, but
should be rarely used.

· A string construction mechanism allowing you to define a 1-byte string associ-
ated with a specific ISO code page, a remnant of the pre-Unicode past, available
only on desktop compilers.

Again, all of these string types can be used on desktop compilers, but are available
only for backwards compatibility reason. The goal is to use Unicode, TEncoding, and
other modern string management techniques whenever possible.

Marco Cantù, Object Pascal Handbook

Part II: OOP in Object Pascal - 193

part ii: oop in

object pascal

Many modern programming languages support some form of object-oriented pro-
gramming (OOP) paradigm. Many of them use a class-based one that is based on
three fundamental concepts:

· Classes, data types with a public interface and a private data structure, imple-
menting encapsulation; instances of these data types are generally called objects,

· Class extensibility or inheritance, which is the ability to extend a data type with
new features without modifying the original one,

· Polymorphism or late binding, which is the ability to refer to objects of different
classes with a uniform interface, and still operate on objects in the way defined
by their specific type.

note Other languages such as IO, JavaScript, Lua and Rebol use a prototype based object-oriented par-
adigm, where objects can be created from other objects rather than from a class depending on how
the object is created. They do provide a form of inheritance, but from another object rather than a
class, and dynamic typing that can be used to implement polymorphism, even if in a rather differ-
ent way.

Marco Cantù, Object Pascal Handbook

194 - Part II: OOP in Object Pascal

You can write Object Pascal applications even without knowing a lot about object
oriented programming. As you create a new form, add new components, and handle
events, the IDE prepares most of the related code for you automatically. But know-
ing the details of the language and its implementation will help you understand
precisely what the system is doing and allow you to master the language completely.

You will also be able to create complex architectures within your applications, and
even entire libraries, and embrace and extend the components that come with the
development environment.

The second part of the book is focused on core object-oriented programming (OOP)
techniques. The aim of this part of the book is both to teach the fundamental con-
cepts of OOP and to detail how Object Pascal implements them, comparing it with
other similar OOP languages.

Summary of Part II

Chapter 7: Objects

Chapter 8: Inheritance

Chapter 9: Handling Exceptions

Chapter 10: Properties and Events

Chapter 11: Interfaces

Chapter 12: Manipulating Classes

Chapter 13: Objects and Memory

Marco Cantù, Object Pascal Handbook

07: Objects - 195

07: objects

Even if you don’t have a detailed knowledge of object-oriented programming (OOP),
this chapter will introduce each of the key concepts. If you are already fluent in
OOP, you can probably go through the material relatively quickly and focus on
Object Pascal language specifics, in comparison to other languages you might
already know.

The OOP support in Object Pascal has a lot of similarities to languages like C# and
Java, it also has some resemblances with C++ and other static and strongly-typed
languages. Dynamic languages, instead, tend to offer a different interpretation of
OOP, as they treat the type system in a more loose and flexible way.

note A lot of the conceptual similarities between C# and Object Pascal are due to the fact that the two
languages share the same designer, Anders Hejlsberg. He was the original author of the Turbo
Pascal compilers, of the first version of Delphi's Object Pascal, and later moved to Microsoft and
designed C# (and more recently the JavaScript derivative TypeScript). You can read more about
the Object Pascal language history in Appendix A.

Marco Cantù, Object Pascal Handbook

196 - 07: Objects

Introducing Classes and Objects

Class and object are two terms commonly used in Object Pascal and other OOP lan-
guages. However, because they are often misused, let’s be sure we agree on their
definitions from the very beginning:

· A class is a user-defined data type, which defines a state (or a representation)
and some operations (or behaviors). In other terms, a class has some internal
data and some methods, in the form of procedures or functions. A class usually
describes the characteristics and behavior of a number of similar objects,
although there are special purpose classes that are meant for a single object.

· An object is an instance of a class, that is a variable of the data type defined by
the class. Objects are actual entities. When the program runs, objects take up
some memory for their internal representation.

The relationship between an object and a class is the same as the one between any
other variable and its data type. Only, in this case variables have a special name.

note The OOP terminology dates back to the first few languages that adopted the model, like Smalltalk.
Most of the original terminology, however, was later dropped in favor of terms in use in proce-
dural languages. So while terms like classes and objects are still commonly used, you'd generally
hear the term invoking a method more often than the original term sending a message to a
receiver (an object). A full and detailed guide to the OOP jargon and how it evolved over time
could be interesting, but would take too much space in this book.

The Definition of a Class

In Object Pascal you can use the following syntax to define a new class data type
(TDate), with some local data fields (Month, Day, Year) and some methods (Set-
Value, LeapYear):

type
 TDate = class
 Month, Day, Year: Integer;
 procedure SetValue (m, d, y: Integer);
 function LeapYear: Boolean;
 end;

note We have already seen a similar structure for records, which are quite similar to classes in term of
definition. There are differences in memory management and other areas, as detailed later in this
chapter. Historically, though, in Object Pascal this syntax was first adopted for classes and later
ported back to records.

Marco Cantù, Object Pascal Handbook

07: Objects - 197

The convention in Object Pascal is to use the letter T as a prefix for the name of
every class you write, like for any other type (T stands for Type, in fact). This is just
a convention—to the compiler, T is just a letter like any other—but it is so common
that following it will make your code easier to understand by other programmers.

Unlike other languages, the class definition in Object Pascal doesn't include the
actual implementation (or definition) of the methods, but only their signature (or
declaration). This makes the class code more compact and significantly more read-
able.

note Although it might look that getting to the actual implementation of the method is more time con-
suming the editor allows you to use the combination of the Shift and Up and Down arrow keys to
navigate from the method declarations to their implementations and vice verse. Moreover, you
can let the editor generate a skeleton of the definition of the methods, after you write the class def-
inition, by using Class Completion (pressing the Ctrl+C keys while the cursor is within the class
definition).

Also keep in mind that beside writing the definition of a class (with its fields and
methods) you can also write a declaration. This has only the class name, as in:

type
 TMyDate = class;

The reason for such a declaration lies in the fact that you might need to have two
classes referencing each other. Given in Object Pascal you cannot use a symbol until
it is defined, to refer a not-yet-defined class you need a declaration. I wrote the fol-
lowing code fragment only to show you the syntax, not that it makes any sense:

type
 THusband = class;

 TWife = class
 husband: THusband;
 end;

 THusband = class
 wife: TWife;
 end;

You'll encounter similar cross-references in real code, which is why this syntax is
important to keep in mind. Notice, that like for methods, a class declared in a unit
must be fully defined later in the same unit.

Marco Cantù, Object Pascal Handbook

198 - 07: Objects

Classes in Other OOP Languages

As a comparison, this is the TDate class written in C# and in Java (which in this sim-
plified case happen to be the same) using a more appropriate set of naming rules,
with the code of the methods omitted:

// C# and Java language

class Date
{
 int month;
 int day;
 int year;

 void setValue (int m, int d, int y)
 {
 // code
 }

 bool leapYear()
 {
 // code
 }
}

In Java and C# the methods' code comes within the class definition, while in Object
Pascal the methods declared in a class should be fully defined in the implementa-
tion portion of the same unit that includes the class definition. In other words, in
Object Pascal a class is always completely defined in a single unit (while a unit can,
of course, contain multiple classes). By contrast, while in C++ methods are sepa-
rately implemented like in Object Pascal, but a header file containing a class
definition has no strict correspondence to an implementation file with the method's
code. A corresponding C++ class would look like:

// C++ language

class Date
{
 int month;
 int day;
 int year;

 void setValue (int m, int d, int y);
 BOOL leapYear();
}

Marco Cantù, Object Pascal Handbook

07: Objects - 199

The Class Methods

Like with records, when you define the code of a method you need to indicate which
class it is part of (in this example the TDate class) by using the class name as a prefix
and the dot notation, as in the following code:

procedure TDate.SetValue(m, d, y: Integer);
begin
 Month := m;
 Day := d;
 Year := y;
end;

function TDate.LeapYear: Boolean;
begin
 // call IsLeapYear in SysUtils.pas
 Result := IsLeapYear (Year);
end;

Differently from most other OOP languages that define methods as functions,
Object Pascal brings over the core distinction between procedures and functions,
depending on the presence of a return value, also for methods. This is not the case
in C++ , where a separately defined method implementation would look like:

// C++ method
void Date::setValue(int m, int d, int y)
{
 month = m;
 day = d;
 year = y;
};

Creating an Object

After this comparison with other popular languages, let's get back to Object Pascal
to see how you can use a class. Once the class has been defined, we can create an
object of this type and use it as in the following code snippet (extracted from the
Dates1 application project like all of the code in this section):

var
 ADay: TDate;
begin
 // create
 ADay := TDate.Create;
 // use
 ADay.SetValue (1, 1, 2016);
 if ADay.LeapYear then
 Show ('Leap year: ' + IntToStr (ADay.Year));

Marco Cantù, Object Pascal Handbook

200 - 07: Objects

The notation used is nothing unusual, but it is powerful. We can write a complex
function (such as LeapYear) and then access its value for every TDate object as if it
were a primitive data type. Notice that ADay.LeapYear is an expression similar to
ADay.Year, although the first is a function call and the second a direct data access.
As we’ll see in Chapter 10, the notation used by Object Pascal to access properties is
again the same.

note Calls of methods with no parameters in most programming languages based on the C language
syntax require parenthesis, like in ADay.LeapYear(). This syntax is legal also in Object Pascal, but
rarely used. Methods with no parameters are generally called without the parenthesis. This is very
different from many languages in which a reference to a function or method with no parenthesis
returns the function address. As we have see in the section “Procedural Types” in Chapter 4,
Object Pascal uses the same notation for calling a function or reading its address, depending on
the context of the expression.

The output of the code snippet above is fairly trivial:

Leap year: 2016

Again, let me compare the object creation with similar code written in other pro-
gramming languages:

// C# and Java languages (object reference model)
Date aDay = new Date();

// C++ language (two alternative styles)
Date aDay; // local allocation
Date* aDay = new Date(); // "manual" reference

The Object Reference Model

In some OOP languages like C++, declaring a variable of a class type creates an
instance of that class (more or less like it happens with records in Object Pascal).
The memory for a local object is taken from the stack, and released when the func-
tion terminates. In most cases, though, you have to explicitly use pointers and
references to have more flexibility in managing the lifetime of an object, adding a lot
of extra complexity.

The Object Pascal language, instead, is based on an object reference model, exactly
like Java or C#. The idea is that each variable of a class type does not hold the actual
value of the object with its data (to store the day, month, and year, for example).
Rather, it contains only a reference, or a pointer, to indicate the memory location
where the actual object data is stored.

Marco Cantù, Object Pascal Handbook

07: Objects - 201

note In my opinion, adopting the object reference model was one of the best design decisions made by
the compiler team in the early days of the language, when this model wasn't so common in pro-
gramming languages (in fact, at the time Java wasn't available and C# didn't exist).

This is why in these languages you need to explicitly create an object and assign it to
a variable, as objects are not automatically initialized. In other words, when you
declare a variable, you don’t create an object in memory, you only reserve the mem-
ory location for a reference to the object. Object instances must be created manually
and explicitly, at least for the objects of the classes you define. (In Object Pascal,
though, instances of components you place on a form are built automatically by the
run time library.)

In Object Pascal, to create an instance of an object, we can call its special Create
method, which is a constructor or another custom constructor defined by the class
itself. Here is the code again:

 ADay := TDate.Create;

As you can see, the constructor is applied to the class (the type), not to the object
(the variable). That's because you are asking the class to create a new instance of its
type, and the result is a new object you'd generally assign to a variable.

Where does the Create method come from? It is a constructor of the class TObject,
from which all the other classes inherit, so it is universally available. It is very com-
mon to add custom constructors to your classes, though, as we'll see later in this
chapter.

Disposing Objects and ARC

In languages that use an object reference model, you need a way to create an object
before using it, and you also need a means of releasing the memory it occupies when
it is no longer needed. If you don't dispose of it, you end filling up memory with
objects you don’t need any more, causing a problem known as a memory leak. To
solve this issue languages like C# and Java, based on a virtual execution environ-
ment (or virtual machine) adopt garbage collection. While this make developer's life
easier, however this approach is subject to some complex performance-related
issues that it isn't really relevant in explaining Object Pascal. So interesting as the
issues are I don't want to delve into them here.

In Object Pascal, you generally release the memory of an object by calling its special
Free method (again, a method of TObject, available in each class). Free removes the
object from memory after calling its destructor (which can have special clean up
code). So you can complete the code snippet above as:

Marco Cantù, Object Pascal Handbook

202 - 07: Objects

var
 ADay: TDate;
begin
 // create
 ADay := TDate.Create;
 // use
 ...
 // free the memory
 ADay.Free;
end;

While this is the standard approach, the component library adds concepts like
object ownership to significantly lessen the impact of manual memory manage-
ment, making this a relatively simple issue to handle.

To further simplify memory management, the Object Pascal compilers for the
mobile platforms introduce an additional mechanism called Automatic Reference
Counting (or ARC). The ARC model uses reference counting and some other
advanced techniques to automatically dispose of objects that are not needed any
longer (or have no references pointing to them). So on these platforms, the call to
Free an object is generally superfluous: as the execution of the code above reaches
the end statement, the ADay variable goes out of scope and the referenced object is
automatically deleted. In any case, if you keep the Free statement in the code, it
does no harm at all and everything will work smoothly both with the desktop and
mobile compilers.

note Automatic Reference Counting (ARC) is a standard memory management technique for iOS devel-
opment in Objective-C and Swift, the preferred languages in Apple's Xcode. Object Pascal
borrowed from that model, including weak references and other elements, but extends it in a few
ways and has a very efficient implementation.

There is much more to memory management and ARC that you need to know, but
given this is a rather important topic and not a simple one, I decided to offer only a
short introduction here and have a full chapter focused on this topic, namely Chap-
ter 13. In that chapter I'll show you in detail the different techniques used on each
platform and those that work across all platforms.

What's Nil?

As I've mentioned, a variable can refer to an object of a given class. But it might not
be initialized yet, or the object it used to refer to might not be available any longer.
This is where you can use nil. This is a constant value indicating that the variable is

Marco Cantù, Object Pascal Handbook

07: Objects - 203

not assigned to any object (or it is assigned to a 0 memory location). When a vari-
able of a class type has no value, you can initialize it this way:

 ADay := nil;

To check if an object has been assigned the variable, you can write either of the fol-
lowing expressions:

if ADay <> nil then ...
if Assigned (ADay) then ...

Do not make the mistake of assigning nil to an object to remove it from memory.
Setting an object to nil and freeing it are two different operations, at least on the
desktop compilers (ARC makes things a little different and it might free an object
when you set a reference to nil). So you often need to both free an object and set its
reference to nil, or call a special purpose procedure that does both operations at
once, called FreeAndNil. Again, more information and some actual demos will be
coming in Chapter 13.

Records vs. Classes in Memory

As I've mentioned earlier, one of the main differences between records and objects
relates to their memory model. Record type variables use local memory, they are
passed as parameters to functions by value by default, and they have a “copy by
value” behavior on assignments. This contrasts with class type variables that are
allocated on the dynamic memory heap, are passed by reference, and have a “copy
by reference” behavior on assignments (thus copying the reference to the same
object in memory, not the actual data).

note A consequence of this different memory management is that records lack inheritance and poly-
morphisms, two features we'll be focusing on in the next chapter.

For example, when you declare a record variable on the stack, you can start using it
right away, without having to call its constructor. This means record variables are
leaner (and more efficient) on the memory manager than regular objects, as they do
not participate in the management of the dynamic memory and ARC. These are the
key reasons for using records instead of objects for small and simple data struc-
tures.

Regarding the difference in the way records and objects are passed as parameters,
consider that the default is to make a full copy of the memory block representing the
record (including all of its data) or of the reference to the object (while the data is

Marco Cantù, Object Pascal Handbook

204 - 07: Objects

not copied). Of course, you can use var or const record parameters to modify the
default behavior for passing record type parameters.

Private, Protected, and Public

A class can have any amount of data fields and any number of methods. However,
for a good object-oriented approach, data should be hidden, or encapsulated, inside
the class using it. When you access a date, for example, it makes no sense to change
the value of the day by itself. In fact, changing the value of the day might result in an
invalid date, such as February 30th. Using methods to access the internal represen-
tation of an object limits the risk of generating erroneous situations, as the methods
can check whether the date is valid and refuse to modify the new value if it is not.
Proper encapsulation is particularly important because it gives the class writer the
freedom to modify the internal representation in a future version.

The concept of encapsulation is quite simple: just think of a class as a “black box”
with a small, visible portion. The visible portion, called the class interface, allows
other parts of a program to access and use the objects of that class. However, when
you use the objects, most of their code is hidden. You seldom know what internal
data the object has, and you usually have no way to access the data directly. Rather
you use the methods to access the data of an object or act on it.

Encapsulation using private and protected members is the object-oriented solution
to a classic programming goal known as information hiding.

Object Pascal has three basic access (or visibility) specifiers: private, protected,
and public. A fourth one, published, will be discussed in the Chapter 10. Here are
the three basic ones:

· The private access specifier denotes fields and methods of a class that are not
accessible outside the unit (the source code file) that declares the class.

· The public access specifier denotes fields and methods that are freely accessible
from any other portion of a program as well as in the unit in which they are
defined.

· The protected access specifier is used to indicate methods and fields with lim-
ited visibility. Only the current class and its derived classes (or subclasses) can
access protected elements. We’ll discuss this keyword again in the “Protected
Fields and Encapsulation” section of the next chapter.

Marco Cantù, Object Pascal Handbook

07: Objects - 205

note Two further access specifiers, strict private and strict protected were added to the language to
match the behavior of other OOP languages. They'll be discussed shortly. They are not listed here
because they are not very commonly used, despite their roles.

Generally, the fields of a class should be private; the methods are usually public.
However, this is not always the case. Methods can be private or protected if they
are needed only internally to perform some partial operations. Fields can be pro-
tected if you are fairly sure that their type definition is not going to change and you
might want to manipulate them directly in derived classes (as explained in the next
chapter), although this is rarely recommended.

As a general rule, you should invariably avoid public fields, and generally expose
some direct access to data using properties, as we’ll see in detail in Chapter 10.
Properties are an extension to the encapsulation mechanism of other OOP lan-
guages and are very important in Object Pascal.

As mentioned, access specifiers only restrict code outside a unit from accessing cer-
tain members of classes declared in that unit. This means that if two classes are in
the same unit, there is no protection for their private fields, something covered in
the next section in more detail.

An Example of Private Data

As an example of the use of these access specifiers for implementing encapsulation,
consider this new version of the TDate class:

type
 TDate = class
 private
 Month, Day, Year: Integer;
 public
 procedure SetValue (m, d, y: Integer);
 function LeapYear: Boolean;
 function GetText: string;
 procedure Increase;
 end;

In this version, the fields are now declared to be private, and there are some new
methods. The first, GetText, is a function that returns a string with the date. You
might think of adding other functions, such as GetDay, GetMonth, and GetYear,
which simply return the corresponding private data, but similar direct data-access
functions are not always needed. Providing access functions for each and every field
might reduce the encapsulation, weaken the abstraction, and make it harder to
modify the internal implementation of a class later on. Access functions should be

Marco Cantù, Object Pascal Handbook

206 - 07: Objects

provided only if they are part of the logical interface of the class you are implement-
ing, not because there are matching fields.

The second new method is the Increase procedure, which increases the date by one
day. This is far from simple, because you need to consider the different lengths of
the various months as well as leap and non-leap years. What I’ll do to make it easier
to write the code is to change the internal implementation of the class to use Object
Pascal TDateTime type for the internal implementation. So the actual class will
change to the following code you can find in the Dates2 application project:

type
 TDate = class
 private
 FDate: TDateTime;

 public
 procedure SetValue (m, d, y: Integer);
 function LeapYear: Boolean;
 function GetText: string;
 procedure Increase;
 end;

Notice that because the only change is in the private portion of the class, you won’t
have to modify any of your existing programs that use it. This is the advantage of
encapsulation!

note In this new version of the class, the (only) field has an identifier that starts with the letter “F”. This
is a fairly common convention in Object Pascal and one I'll often use in the book. While this is the
official style, there is another alternative and commonly used convention, which is use the letter
“f” lowercase as field prefix.

To end this section, let me finish describing the project, by listing the source code of
the class methods, which rely on a few system functions for mapping dates to the
internal structure and vice verse:

procedure TDate.SetValue (m, d, y: Integer);
begin
 fDate := EncodeDate (y, m, d);
end;

function TDate.GetText: string;
begin
 Result := DateToStr (fDate);
end;

procedure TDate.Increase;
begin
 fDate := fDate + 1;
end;

Marco Cantù, Object Pascal Handbook

07: Objects - 207

function TDate.LeapYear: Boolean;
begin
 // call IsLeapYear in SysUtils and YearOf in DateUtils
 Result := IsLeapYear (YearOf (fDate));
end;

Notice also how the code to use the class cannot refer to the Year value any more,
but it can only return information about the date object as allowed by its methods:

var
 ADay: TDate;
begin
 // create
 ADay := TDate.Create;

 // use
 ADay.SetValue (1, 1, 2016);
 ADay.Increase;

 if ADay.LeapYear then
 Show ('Leap year: ' + ADay.GetText);

 // free the memory (for non ARC platforms)
 ADay.Free;

The output is not much different than before:

Leap year: 1/2/2016

When Private Is Really Private

I have already mentioned that, differently from most other OOP languages, in
Object Pascal class access specifiers like private and protected only restrict access
to given class members from code outside the unit in which the class is declared. In
other words, any global function or any method of a class written in the same unit,
can access the private data of any class in the unit. To overcome this anomaly (com-
pared to other languages and compared to the concept of encapsulation), the
language introduced also the strict private and strict protected specifiers.

These two specifiers work in the way you'd probably expect and followed by most
other OOP languages, which means that other classes even within the same unit
cannot access strict private symbols of a class and can access strict protected sym-
bols only if they inherit from that class.

Even if these strict access specifier offer a better and safer implementation of
encapsulation, most Object Pascal developers tend to stick with the classic, loose
version, and simply avoid bypassing the rules in their code.

Marco Cantù, Object Pascal Handbook

208 - 07: Objects

note The C++ language has the concept of friend classes, that is classes allowed to access another class
private data. Following this terminology, we can say that in Object Pascal all classes in the same
unit are automatically considered as friend classes.

Encapsulation and Forms

One of the key ideas of encapsulation is to reduce the number of global variables
used by a program. A global variable can be accessed from every portion of a pro-
gram. For this reason, a change in a global variable affects the whole program. On
the other hand, when you change the representation of a field of a class, you only
need to change the code of some methods of that class referring to the given field,
and nothing else. Therefore, we can say that information hiding refers to encapsu-
lating changes.

Let me clarify this idea with a practical example. When you have a program with
multiple forms, you can make some data available to every form by declaring it as a
global variable in the interface portion of the unit of the form:

var
 Form1: TForm1;
 nClicks: Integer;

This works but has two problems. First, the data (nClicks) is not connected to a
specific instance of the form, but to the entire program. If you create two forms of
the same type, they’ll share the data. If you want every form of the same type to have
its own copy of the data, the only solution is to add it to the form class:

type
 TForm1 = class(TForm)
 public
 nClicks: Integer;
 end;

The second problem is that if you define the data as a global variable or as a public
field of a form, you won’t be able to modify its implementation in the future without
affecting the code that uses the data. For example, if you only have to read the cur-
rent value from other forms, you can declare the data as private and provide a
method to read the value:

type
 TForm1 = class(TForm)
 // components and event handlers here
 public
 function GetClicks: Integer;
 private
 nClicks: Integer;
 end;

Marco Cantù, Object Pascal Handbook

07: Objects - 209

function TForm1.GetClicks: Integer;
begin
 Result := nClicks;
end;

An even better solution is to add a property to the form, as we’ll see in Chapter 10.
You can experiment with this code by opening the ClicksCount application project.
In short, the form of this project has two buttons and a label at the top, with most of
the surface empty for a user to click (or tap) onto it. In this case, the count is
increased and the label is updated with the new value:

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Single);
begin
 Inc (nClicks);
 Label1.Text := nClicks.ToString;
end;

You can see the application in action in Figure 7.1. The project's form also has two
buttons, one for creating a new form of the same type and the second to close it (so
you can give focus back to the previous form).

Figure 7.1:
The form of the
ClicksCount
application project
showing the number of
clicks or taps on a form
(tracked using private
form data)

Marco Cantù, Object Pascal Handbook

210 - 07: Objects

This is done to emphasize how different instances of the same form type each have
their own clicks count. This is the code of the two methods:

procedure TForm1.Button1Click(Sender: TObject);
var
 NewForm: TForm1;
begin
 NewForm := TForm1.Create(Application);
 NewForm.Show;
end;

procedure TForm1.Button2Click(Sender: TObject);
begin
 Close;
end;

The Self Keyword

We’ve seen that methods are very similar to procedures and functions. The real dif-
ference is that methods have an extra, implicit parameter. This is a reference to the
current object, the object the method is applied to. Within a method you can refer to
this parameter—the current object—using the Self keyword.

This extra hidden parameter is needed when you create several objects of the same
class, so that each time you apply a method to one of the objects, the method will
operate only on its own data and not affect the other sibling objects.

note We have already seen the role of the Self keywords in Chapter 5, while discussing records. The
concept and its implementation are very similar. Again, historically Self was first introduced for
classes and later extended to records, when methods were added also to this data structure.

For example, in the SetValue method of the TDate class, listed earlier, we simply
use Month, Year, and Day to refer to the fields of the current object, something you
might express as:

Self.Month := m;
Self.Day := d;

This is actually how the Object Pascal compiler translates the code, not how you are
supposed to write it. The Self keyword is a fundamental language construct used by
the compiler, but at times it is used by programmers to resolve name conflicts and
to make tricky code more readable.

Marco Cantù, Object Pascal Handbook

07: Objects - 211

note The C++, Java, C#, and JavaScript languages have a similar feature based on the keyword this.
However in JavaScript using this in a method to refer to object fields is compulsory, unlike in C++,
C# and Java.

All you really need to know about Self is that the technical implementation of a call
to a method differs from that of a call to a generic subroutine. Methods have that
extra hidden parameter, Self. Because all this happens behind the scenes, you don't
need to know how Self works at this time.

The second important think to know is that you can explicitly use Self to refer to
the current object as a whole, for example passing the current object as parameter to
another function.

Creating Components Dynamically

As an example of what I've just mentioned, the Self keyword is often used when
you need to refer to the current form explicitly in one of its methods.

The typical example is the creation of a component at run time, where you must
pass the owner of the component to its Create constructor and assign the same
value to its Parent property. In both cases, you have to supply the current form
object as parameter or value, and the best way to do this is to use the Self keyword.

note The ownership of a component indicates a lifetime and memory management relationship
between two objects. When the owner of a component is freed the component will also be freed.
Parenthood refers to visual controls hosting a child control within their surface.

To demonstrate this kind of code, I’ve written the CreateComps application project.
This application has a simple form with no components and a handler for its
OnMouseDown event, which also receives as its parameter the position of the mouse
click. I need this information to create a button component in that position. Here is
the code of the method:

procedure TForm1.FormMouseDown (Sender: TObject;
 Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
var
 Btn: TButton;
begin
 Btn := TButton.Create (Self);
 Btn.Parent := Self;
 Btn.Position.X := X;
 Btn.Position.Y := Y;
 Btn.Height := 35;
 Btn.Width := 135;

Marco Cantù, Object Pascal Handbook

212 - 07: Objects

 Btn.Text := Format ('At %d, %d', [X, Y]);
end;

Notice you need to add the FMX.StdCtrls unit to the uses statement to compile this
event handler.

The effect of this code is to create buttons at mouse-click positions, with a caption
indicating the exact location, as you can see in Figure 7.2. In the code above, notice
in particular the use of the Self keyword, as the parameter of the Create method
and as the value of the Parent property.

Figure 7.2:
The output of the
CreateComps
application project
example on a mobile
device

When writing a procedure like the code you’ve just seen, you might be tempted to
use the Form1 variable instead of Self. In this specific example, that change
wouldn’t make any practical difference (although it won't be good coding practice),
but if there are multiple instances of a form, using Form1 would really be an error.

In fact, if the Form1 variable refers to a form of that type being created (generally the
first one) and if you create two instances of the same form type, by clicking on any
following forms the new button will always be displayed in the first one. Its owner
and Parent will be Form1 and not the form on which the user has clicked.

In general, writing a method in which you refer to a particular instance of the same
class when the current object is required is a really a bad, bad OOP practice.

Marco Cantù, Object Pascal Handbook

07: Objects - 213

Constructors

In the code above, to create an object of a class (or allocate the memory for an
object), I've called the Create method. This is a constructor, a special method that
you can apply to a class to allocate memory for a new instance of that class:

 ADay := TDate.Create;

The instance is returned by the constructor and can be assigned to a variable for
storing the object and using it later on. When you are creating an object, its memory
is initialized. All of the data of the new instance to set to zero (or nil, or empty
string, or the proper “default” value for a given data type).

If you want your instance data to start out with a nonzero value (particularly when a
zero value makes little sense as a default), you need to write a custom constructor to
do that. The new constructor can be called Create, or it can have any other name.
What determines its role is not the name but the use of a constructor keyword.

note In other words, Object Pascal supports named constructors, while in many OOP languages the
constructor must be named after the class itself. With named constructors, you can have more
than one constructor with the same parameters (beside overloading the Create symbol – over-
loading is covered in the next section). Another very special feature of the language, quite unique
among OOP languages, is that constructors can also be virtual. I'll show some examples the cover
the consequences later in the book.

The main reason to add a custom constructor to a class is to initialize its data. If you
create objects without initializing them, calling methods later on may result in odd
behavior or even a run-time error. Instead of waiting for these errors to appear, you
should use preventive techniques to avoid them in the first place. One such tech-
nique is the consistent use of constructors to initialize objects’ data. For example,
we must call the SetValue procedure of the TDate class after we’ve created the
object. As an alternative, we can provide a customized constructor, which creates
the object and gives it an initial value:

constructor TDate.Create;
begin
 FDate := Today;
end;

constructor TDate.CreateFromValues (m, d, y: Integer);
begin
 FDate := SetValue (m, d, y);
end;

Marco Cantù, Object Pascal Handbook

214 - 07: Objects

You can use these constructors as follows, as I've done in the Date3 application
project, in the code attached to two separate buttons:

ADay1 := TDate.Create;
ADay2 := TDate.CreateFromValues (12, 25, 2015);

Although in general you can use any name for a constructor, keep in mind that if
you use a name other than Create, the Create constructor of the base TObject class
will still be available. If you are developing and distributing code for others to use, a
programmer calling this default Create constructor might bypass the initialization
code you’ve provided. By defining a Create constructor with some parameters (or
none, as in the example above), you replace the default definition with a new one
and make its use compulsory.

In the same way that a class can have a custom constructor, it can have a custom
destructor, a method declared with the destructor keyword and invariably called
Destroy. This destructor method which can perform some resource cleanup before
an object is destroyed, but in many cases a custom destructor is not required.

Just as a constructor call allocates memory for the object, a destructor call frees the
memory. Custom destructors are really only needed for objects that acquire
resources, such as another object, in their constructors or during their lifetime.

Differently from the default Create constructor, the default Destroy destructor is
virtual and it is highly recommended that developer override this virtual destructor
(virtual methods are covered in the next chapter).

That's because instead of a calling destructor directly to free an object, it is a good a
common Object Pascal programming practice to call the special Free method of the
TObject class, which in turn calls Destroy only if the object exists—that is, if it is not
nil. So, it you define a destructor with a different name, it won't be called by Free.
Again, more on this topic when we'll focus on memory management in Chapter 13.

note As covered in the next chapter, Destroy is a virtual method. You can replace its base definition
with a new one in an inherited class marking it with the override keyword. By the way, having a
static method that calls a virtual one is a very common programming style, called the template
pattern. In a destructor, you should generally only write resource cleanup code. Try to avoid more
complex operations, likely to raise exceptions or to take a significant amount of time.

Marco Cantù, Object Pascal Handbook

07: Objects - 215

Managing Local Class Data with Constructors
and Destructors

Even if I'll cover more complex scenarios later in the book, here I want to show you
a simple case of resource protection using a constructor and a destructor. This is the
most common scenario for using a destructor. Suppose you have a class with the fol-
lowing structure (also part of the Date3 application project):

type
 TPerson = class
 private
 FName: string;
 FBirthDate: TDate;
 public
 constructor Create (name: string);
 destructor Destroy; override;
 // some actual methods
 function Info: string;
 end;

This class has a reference to another, internal object called FBirthDate. When an
instance of the TPerson class is created, this internal (or child) object should also be
created, and when the instance is destroyed, the child object should also be dis-
posed of. Here is how you can write the code of the constructor and overridden
destructor, and of the internal method that can always take for granted that the
internal object exists:

constructor TPerson.Create (name: string);
begin
 FName := Name;
 FBirthDate := TDate.Create;
end;

destructor TPerson.Destroy;
begin
 FBirthDate.Free;
 inherited;
end;

function TPerson.Info: string;
begin
 Result := FName + ': ' + FBirthDate.GetText;
end;

Marco Cantù, Object Pascal Handbook

216 - 07: Objects

note To understand the override keyword used to define the destructor and the inherited keyword
within its definition, you'll have to wait until the next chapter. For now suffice to say the first is
used to indicate that the class has a new definition replacing the base Destroy destructor, while
the latter is used to invoke that base class destructor. Notice also that override is used in the
method declaration, but not in the method implementation code.

Now you can use an object of the external class as in the following scenario, and the
internal object will be properly created when the TPerson object is created and
destroyed in a timely fashion when TPerson is destroyed:

var
 Person: TPerson;
begin
 Person := TPerson.Create ('John');
 // use the class and its internal object
 Show (Person.Info);
 Person.Free;
end;

Again, you can find this code as part of the Dates3 application project.

While this is the standard way of writing such code in Object Pascal, the ARC-
enabled compilers won't require the explicit calls to Free in the destructor or in the
sample code above. So under ARC the destructor won't be required, although
(again) it won't harm.

note Currently the only Object Pascal compilers that enable ARC are the Android compilers, the iOS
device compiler and the iOS Simulator compiler. More might become available in the future. The
differences in memory usage and coding style are highlighted in Chapter 13.

Overloaded Methods and Constructors

Object Pascal supports overloaded functions and methods: you can have multiple
methods with the same name, provided that the parameters are different. We have
already seen how overloading works for global functions and procedures the same
rules apply to methods. By checking the parameters, the compiler can determine
which version of the method you want to call.

Again, there are two basic rules for overloading:

· Each version of the method must be followed by the overload keyword.

· The differences must be in the number or type of the parameters or both. The
return type, instead, cannot be used to distinguish among two methods.

Marco Cantù, Object Pascal Handbook

07: Objects - 217

If overloading can be applied to all of the methods of a class, this feature is particu-
larly relevant for constructors, because we can have multiple constructors and call
them all Create, which makes them easy to remember.

note Historically, overloading was added to C++ specifically to allow the use of multiple constructors,
given they must have the same name (the name of the class). In Object Pascal, this feature could
have been considered unnecessary, simply because multiple constructors can have different spe-
cific names, but was added to the language anyway as it also proved to be useful in many other
scenarios.

As an example of overloading, I’ve added to the TDate class two different versions of
the SetValue method:

type
 TDate = class
 public
 procedure SetValue (Month, Day, Year: Integer); overload;
 procedure SetValue (NewDate: TDateTime); overload;

procedure TDate.SetValue (Month, Day, Year: Integer);
begin
 FDate := EncodeDate (Year, Month, Day);
end;

procedure TDate.SetValue(NewDate: TDateTime);
begin
 FDate := NewDate;
end;

After this simple step, I’ve added to the class two separate Create constructors, one
with no parameters, which hides the default constructor, and one with the initializa-
tion values. The constructor with no parameters uses today's date as the default
value:

type
 TDate = class
 public
 constructor Create; overload;
 constructor Create (Month, Day, Year: Integer); overload;

constructor TDate.Create (Month, Day, Year: Integer);
begin
 FDate := EncodeDate (Year, Month, Day);
end;

constructor TDate.Create;
begin
 FDate := Date;
end;

Marco Cantù, Object Pascal Handbook

218 - 07: Objects

Having these two constructors makes it possible to define a new TDate object in two
different ways:

var
 Day1, Day2: TDate;
begin
 Day1 := TDate.Create (1999, 12, 25);
 Day2 := TDate.Create; // today

This code is part of the Dates4 application project.

The Complete TDate Class

Throughout this chapter, I’ve shown you bits and pieces of the source code for dif-
ferent versions of a TDate class. The first version was based on three integers to
store the year, the month, and the day; a second version used a field of the TDate-
Time type provided by the RTL. Here is the complete interface portion of the unit
that defines the TDate class:

unit Dates;

interface

type
 TDate = class
 private
 FDate: TDateTime;
 public
 constructor Create; overload;
 constructor Create (Month, Day, Year: Integer); overload;
 procedure SetValue (Month, Day, Year: Integer); overload;
 procedure SetValue (NewDate: TDateTime); overload;
 function LeapYear: Boolean;
 procedure Increase (NumberOfDays: Integer = 1);
 procedure Decrease (NumberOfDays: Integer = 1);
 function GetText: string;
 end;

implementation
...

The aim of the new methods, Increase and Decrease (which have a default value for
their parameter), is quite easy to understand. If called with no parameter, they
change the value of the date to the next or previous day. If a NumberOfDays parame-
ter is part of the call, they add or subtract that number:

procedure TDate.Increase (NumberOfDays: Integer = 1);
begin
 FDate := FDate + NumberOfDays;
end;

Marco Cantù, Object Pascal Handbook

07: Objects - 219

The method GetText returns a string with the formatted date, using the DateToStr
function for the conversion:

function TDate.GetText: string;
begin
 GetText := DateToStr (FDate);
end;

We’ve already seen most of the methods in the previous sections, so I won’t provide
the complete listing; you can find it in the code of the ViewDate application project
I’ve written to test the class. The form is a little more complex than others in the
book, and it has a caption to display a date and six buttons, which can be used to
modify the value of the object. You can see the main form of the ViewDate applica-
tion project at run time in Figure 7.3. To make the Label component look nice, I’ve
given it a big font, made it as wide as the form, set its Alignment property to taCen-
ter, and set its AutoSize property to False.

Figure 7.3:
The output of the
ViewDate application
at start-up

Marco Cantù, Object Pascal Handbook

220 - 07: Objects

The start-up code of this program is in the OnCreate event handler of the form. In
the corresponding method, we create an instance of the TDate class, initialize this
object, and then show its textual description in the Text of the label, as shown in
Figure 7.3.

procedure TDateForm.FormCreate(Sender: TObject);
begin
 ADay := TDate.Create;
 LabelDate.Text := ADay.GetText;
end;

ADay is a private field of the class of the form, TDateForm. By the way, the name for
the class is automatically chosen by the development environment when you change
the Name property of the form to DateForm.

The specific date object is created when the form is created (setting up the same
relationship we saw earlier between the person class and its date sub-object) and is
then destroyed along with the form:

procedure TDateForm.FormDestroy(Sender: TObject);
begin
 ADay.Free;
end;

When the user clicks one of the six buttons, we need to apply the corresponding
method to the ADay object and then display the new value of the date in the label:

procedure TDateForm.BtnTodayClick(Sender: TObject);
begin
 ADay.SetValue (Today);
 LabelDate.Text := ADay.GetText;
end;

An alternative way to write the last method is to destroy the current object and cre-
ate a new one:

procedure TDateForm.BtnTodayClick(Sender: TObject);
begin
 ADay.Free;
 ADay := TDate.Create;
 LabelDate.Text := ADay.GetText;
end;

In this particular circumstance, this is not a very good approach (because creating a
new object and destroying an existing one entails a lot of time overhead, when all we
need is to change the object’s value), but it allows me to show you a couple of Object
Pascal techniques. The first thing to notice is that we destroy the previous object
before assigning a new one. The assignment operation, in fact, replaces the refer-
ence, leaving the object in memory (even if no pointer is referring to it). When you
assign an object to another object, the compiler simply copies the reference to the
object in memory to the new object reference.

Marco Cantù, Object Pascal Handbook

07: Objects - 221

This is what happens on desktop platforms. On ARC-enabled mobile platforms,
instead, the code above could be written without the call to Free:

procedure TDateForm.BtnTodayClick(Sender: TObject);
begin
 ADay := TDate.Create;
 LabelDate.Text := ADay.GetText;
end;

As the new object is assigned, in fact, the old one looses the only reference and is
automatically disposed.

One side issue is how do you copy the data from one object to another. This case is
very simple, because there is only one field and a method to initialize it. In general if
you want to change the data inside an existing object, you have to copy each field, or
provide a specific method to copy all of the internal data. Some classes have an
Assign method, which does this deep-copy operation.

note To be more precise, in the runtime library all of the classes inheriting from TPersistent have the
Assign method, but most of those inheriting from TComponent don’t implement it, raising an
exception when it is called. The reason lies in the streaming mechanism supported by the runtime
libraries and the support for properties of TPersistent types, but this is way too complex to delve
into at this point of the book.

Nested Types and Nested Constants

Object Pascal allows you to declare new classes in the interface section of a unit,
allowing other units of the program to reference them, or in the implementation
section, where they are accessible only from methods of other classes of the same
unit or from global routines implemented in that unit after the class definition.

A more recent additional option is the possibility to declare a class (or any other
type) within another class. As any other member of the class, the nested class and
other nested types can have a restricted visibility (say, private or protected).

Relevant examples of nested types include enumerations used by the same class and
other implementation-support classes.

A related syntax allows you to define a nested constant, a constant value associated
with the class (again usable only internally if private or from the rest of the program
if public). As an example, consider the following declaration of a nested class
(extracted from the NestedClass unit of the NestedTypes application project):

type

Marco Cantù, Object Pascal Handbook

222 - 07: Objects

 TOne = class
 private
 someData: Integer;
 public
 // nested constant
 const foo = 12;

 // nested type
 type
 TInside = class
 public
 procedure InsideHello;
 private
 Msg: string;
 end;

 public
 procedure Hello;
 end;

procedure TOne.Hello;
var
 ins: TInside;
begin
 ins := TInside.Create;
 ins.Msg := 'hi';
 ins.InsideHello;
 Show ('constant is ' + IntToStr (foo));
 ins.Free;
end;

procedure TOne.TInside.InsideHello;
begin
 msg := 'new msg';
 Show ('internal call');
 if not Assigned (InsIns) then
 InsIns := TInsideInside.Create;
 InsIns.Two;
end;

procedure TOne.TInside.TInsideInside.Two;
begin
 Show ('this is a method of a nested/nested class');
end;

The nested class can be used directly within the class (as demonstrated in the list-
ing) or outside the class (if it is declared in the public section), but with the fully
qualified name TOne.TInside. The full name of the class is used also in the defini-
tion of the method of the nested class, in this case TOne.TInside. The hosting class
can have a field of the nested class type immediately after you've declared the
nested class (as you can see in the code of the NestedClass application project).

The class with the nested classes is used as follows:

Marco Cantù, Object Pascal Handbook

07: Objects - 223

var
 One: TOne;
begin
 One := TOne.Create;
 One.Hello;
 One.Free;

This produces the following output:

internal call
this is a method of a nested/nested class
constant is 12

How would you benefit from using a nested class in the Object Pascal language? The
concept is commonly used in Java to implement event handler delegates and makes
sense in C# where you cannot hide a class inside a unit. In Object Pascal nested
classes are the only way you can have a field of the type of another private class (or
inner class) without adding it to the global name space and making it globally visi-
ble.

If the internal class is used only by a method, you can achieve the same effect by
declaring the class within the implementation portion of the unit. But if the inner
class is referenced in the interface section of the unit (for example because it is used
for a field or a parameter), it must be declared in the same interface section and will
end up being visible. The trick of declaring such a field of a generic or base type and
then casting it to the specific (private) type is much less clean than using a nested
class.

note In chapter 10 there is a practical example in which nested classes come in handy, namely imple-
menting a custom iterator for a for in loop.

Marco Cantù, Object Pascal Handbook

224 - 07: Objects

Marco Cantù, Object Pascal Handbook

08: Inheritance - 225

08: inheritance

If the key reason for writing classes is encapsulation, the key reason for using inher-
itance among classes is flexibility. Combine the two concepts and you can have data
types you can use and are not going to change with the ability to create modified
versions of those types, in what was originally known as the “open-close principle”.
Now it is true that inheritance is a very strong binding leading to tight coupled code,
but it is also true it offers great power to the developer (and, yes, more responsibil-
ity). Rather than opening up a debate on this feature, however, my goal here is to
describe you how type inheritance works and specifically how it works in the Object
Pascal language.

Inheriting from Existing Types

We often need to use a slightly different version of an existing class that we have
written or that someone has given to us. For example, you might need to add a new
method or slightly change an existing one. You can do this easily by modifying the
original code, unless you want to be able to use the two different versions of the
class in different circumstances. Also, if the class was originally written by someone
else (and you have found it in a library), you might want to keep your changes sepa-
rate.

Marco Cantù, Object Pascal Handbook

226 - 08: Inheritance

A typical old-school alternative for having two similar versions of a class is to make
a copy of the original type definition, change its code to support the new features,
and give a new name to the resulting class. This might work, but it also might create
problems: in duplicating the code you also duplicate the bugs; and if you want to
add a new feature, you’ll need to add it two or more times, depending on the num-
ber of copies of the original code you’ve made over time. Moreover, this approach
results in two completely different data types, so the compiler cannot help you take
advantage of the similarities between the two types.

To solve these kinds of problems in expressing similarities between classes, Object
Pascal allows you to define a new class directly from an existing one. This technique
is known as inheritance (or subclassing, or type derivation) and is one of the fun-
damental elements of object-oriented programming languages. To inherit from an
existing class, you only need to indicate that class at the beginning of the declaration
of the subclass. For example, this is done automatically each time you create a new
form:

type
 TForm1 = class(TForm)
 end;

This simple definition indicates that the TForm1 class inherits all the methods,
fields, properties, and events of the TForm class. You can apply any public method of
the TForm class to an object of the TForm1 type. TForm, in turn, inherits some of its
methods from another class, and so on, up to the TObject class (which is the base
class of all classes).

By comparison C++, C# and Java would use something like:

class Form1 : TForm
{
 ...
}

As a simple example of inheritance, we can change the ViewDate application project
of the last chapter slightly, deriving a new class from TDate and modifying one of its
functions, GetText. You can find this code in the DATES.PAS file of the DerivedDates
application project.

type
 TNewDate = class (TDate)
 public
 function GetText: string;
 end;

In this example, TNewDate is derived from TDate. It is common to say that TDate is
an ancestor class or base class or parent class of TNewDate and that TNewDate is a
subclass, descendant class, or child class of TDate.

Marco Cantù, Object Pascal Handbook

08: Inheritance - 227

To implement the new version of the GetText function, I used the FormatDateTime
function, which uses (among other features) the predefined month names. Here is
the GetText method, where ‘dddddd’ stands for the long data format:

function TNewDate.GetText: string;
begin
 Result := FormatDateTime (‘dddddd’, fDate);
end;

Once we have defined the new class, we need to use this new data type in the code of
the form of the DerivedDates project. Simply define the ADay object of type TNew-
Date, and call its constructor in the FormCreate method:

type
 TDateForm = class(TForm)
 ...
 private
 ADay: TNewDate; // updated declaration
 end;

procedure TDateForm.FormCreate(Sender: TObject);
begin
 ADay := TNewDate.Create; // updated line
 DateLabel.text := TheDay.GetText;
end;

Without any other changes, the new application will work properly. The TNewDate
class inherits the methods to increase the date, add a number of days, and so on. In
addition, the older code calling these methods still works. Actually, to call the new
version of the GetText method, we don’t need to change the source code! The Object
Pascal compiler will automatically bind that call to a new method.

The source code of all the other event handlers remains exactly the same, although
its meaning changes considerably, as the new output demonstrates (see Figure 8.1).

A Common Base Class

We have seen that if you can inherit from a given base class by writing:

type
 TNewDate = class (TDate)
 ...
 end;

But what happens if you omit a base class and write:

Marco Cantù, Object Pascal Handbook

228 - 08: Inheritance

Figure 8.1:
The output of the
DerivedDates program,
with the name of the
month and of the day
depending on Windows
regional settings

type
 TNewDate = class
 ...
 end;

In this case your class inherits from a base class, called TObject. In other words
Object Pascal has a single-rooted class hierarchy, in which all classes directly or
indirectly inherit from a common ancestor class. The most commonly used methods
of TObject are Create, Free, and Destroy; but there are many others I'll use
throughout the book. A complete description of this fundamental class (that could
be considered both part of the language and also part of the runtime library) with a
reference to all of its methods is available in Chapter 17.

note The concept of a common ancestor class is present also in the C# and Java languages, where this is
simply called Object. The C++ language, on the other hand, hasn't got such an idea, and a C++
program generally has multiple independent class hierarchies.

Marco Cantù, Object Pascal Handbook

08: Inheritance - 229

Protected Fields and Encapsulation

The code of the GetText method of the TNewDate class compiles only if it is written
in the same unit as the TDate class. In fact, it accesses the fDate private field of the
ancestor class. If we want to place the descendant class in a new unit, we must
either declare the fDate field as protected or add a simple, possibly protected
method in the ancestor class to read the value of the private field.

Many developers believe that the first solution is always the best, because declaring
most of the fields as protected will make a class more extensible and will make it
easier to write subclasses. However, this violates the idea of encapsulation. In a
large hierarchy of classes, changing the definition of some protected fields of the
base classes becomes as difficult as changing some global data structures. If ten
derived classes are accessing this data, changing its definition means potentially
modifying the code in each of the ten classes.

In other words, flexibility, extension, and encapsulation often become conflicting
objectives. When this happens, you should try to favor encapsulation. If you can do
so without sacrificing flexibility, that will be even better. Often this intermediate
solution can be obtained by using a virtual method, a topic I’ll discuss in detail
below in the section “Late Binding and Polymorphism.” If you choose not to use
encapsulation in order to obtain faster coding of the subclasses, then your design
might not follow the object-oriented principles.

Remember also that protected fields share the same access rules of private ones, so
that any other class in the same unit can always access protected members of other
classes. As mentioned in the previous chapter, you can use stronger encapsulation
by using the strict protected access specifier.

Using the “Protected Hack”

If you are new to Object Pascal and to OOP, this is a rather advanced sec-
tion you might want to skip the first time you are reading this book, as it
might be quite confusing.

Given how unit protection works, even protected members of base classes of classes
declared in the current unit can be directly accesses. This is the rationale behind
what it generally called “the protected hack”, that is the ability to define a derived
class identical to its base class for the only purpose of gaining access to the pro-
tected member of the base class. Here is how it works.

Marco Cantù, Object Pascal Handbook

230 - 08: Inheritance

We’ve seen that the private and protected data of a class is accessible to any func-
tions or methods that appear in the same unit as the class. For example, consider
this simple class (part of the Protection application project):

type
 TTest = class
 protected
 ProtectedData: Integer;
 public
 PublicData: Integer;
 function GetValue: string;
 end;

The GetValue method simply returns a string with the two integer values:

function TTest.GetValue: string;
begin
 Result := Format (‘Public: %d, Protected: %d’,
 [PublicData, ProtectedData]);
end;

Once you place this class in its own unit, you won’t be able to access its protected
portion from other units directly. Accordingly, if you write the following code,

procedure TForm1.Button1Click(Sender: TObject);
var
 Obj: TTest;
begin
 Obj := TTest.Create;
 Obj.PublicData := 10;
 Obj.ProtectedData := 20; // won’t compile
 Show (Obj.GetValue);
 Obj.Free;
end;

the compiler will issue an error message, Undeclared identifier: “ProtectedData.”
At this point, you might think there is no way to access the protected data of a class
defined in a different unit. However, there is a way around it. Consider what hap-
pens if you create an apparently useless derived class, such as

type
 TFake = class (TTest);

Now, in the same unit where you have declared it, you can call any protected
method of the TFake class. In fact you can call protected methods of a class declared
in the same unit. How does this helps using an object of class TTest, though? Con-
sidering that the two classes share the same exact memory layout (as there are no
differences) you can force the compiler to treat an object of a class like one of the
other, with what is generally a type-unsafe cast:

procedure TForm1.Button2Click(Sender: TObject);
var
 Obj: TTest;

Marco Cantù, Object Pascal Handbook

08: Inheritance - 231

begin
 Obj := TTest.Create;
 Obj.PublicData := 10;
 TFake (Obj).ProtectedData := 20; // compiles!
 Show (Obj.GetValue);
 Obj.Free;
end;

This code compiles and works properly, as you can see by running the Protection
application project. Again, the reason is that the TFake class automatically inherits
the protected fields of the TTest base class, and because the TFake class is in the
same unit as the code that tries to access the data in the inherited fields, the pro-
tected data is accessible.

Now that I’ve shown you how to do this, I must warn you that violating the class-
protection mechanism this way is likely to cause errors in your program (from
accessing data that you really shouldn’t), and it runs counter to good OOP tech-
nique. However, there are rare times when using this technique is the best solution,
as you’ll see by looking at the library source code and the code of many components.

Overall, this technique is a hack and it should be avoided whenever possible,
although it can be considered to all effects as part of the language specification and
is available on all platforms and in all present and past versions of Object Pascal.

From Inheritance to Polymorphism

Inheritance is a nice technique in terms of letting you avoid code duplication and
share code methods among different classes. Its true power, however, comes from
the ability to handle objects of different classes in a uniform manner, something
often indicated in object-oriented programming languages by the term polymor-
phism or referenced as late binding.

There are several elements we have to explore to fully understand this feature: type
compatibility among derived classes, virtual methods, and more, as covered in the
next few sections.

Inheritance and Type Compatibility

As we have seen to some extent, Object Pascal is a strictly typed language. This
means that you cannot, for example, assign an integer value to a Boolean variable, at
least not without an explicit typecast. The basic rule is that two values are type-com-

Marco Cantù, Object Pascal Handbook

232 - 08: Inheritance

patible only if they are of the same data type, or (to be more precise) if their data
type has the same name and their definition comes from the same unit.

There is an important exception to this rule in the case of class types. If you declare
a class, such as TAnimal, and derive from it a new class, say TDog, you can then
assign an object of type TDog to a variable of type TAnimal. That is because a dog is
an animal! So, although this might surprise you, the following constructor calls are
both legal:

var
 MyAnimal1, MyAnimal2: TAnimal;
begin
 MyAnimal1 := TAnimal.Create;
 MyAnimal2 := TDog.Create;

In more precise terms, you can use an object of a descendant class any time an
object of an ancestor class is expected. However, the reverse is not legal; you cannot
use an object of an ancestor class when an object of a descendant class is expected.
To simplify the explanation, here it is again in code terms:

MyAnimal := MyDog; // This is OK
MyDog := MyAnimal; // This is an error!!!

In fact, while we can always say that a dog is an animal, we cannot assume that any
given animal is a dog. This might be true at times, but not always. This is quite logi-
cal, and the language type compatibility rules follow this same logic.

Before we look at the implications of this important feature of the language, you can
try out the Animals1 application project, which defines the two simple TAnimal and
TDog classes, inheriting one from the other:

type
 TAnimal = class
 public
 constructor Create;
 function GetKind: string;
 private
 FKind: string;
 end;

 TDog = class (TAnimal)
 public
 constructor Create;
 end;

The two Create methods simply set the value of FKind, which is returned by the
GetKind function.

The form of this example, shown in Figure 8.2, has two radio buttons (hosted by a
panel) to pick an object of one or the other class. This object is stored in the private
field MyAnimal of type TAnimal. An instance of this class is created and initialized

Marco Cantù, Object Pascal Handbook

08: Inheritance - 233

when the form is created and re-created each time one of the radio buttons is
selected (here I'm showing only the code of the second radio button):

procedure TFormAnimals.FormCreate(Sender: TObject);
begin
 MyAnimal := TAnimal.Create;
end;

procedure TFormAnimals.RadioButton2Change(Sender: TObject);
begin
 MyAnimal.Free;
 MyAnimal := TDog.Create;
end;

Figure 8.2:
The form of the
Animals1 application
project in the
development
environment

Finally, the Kind button calls the GetKind method for the current animal and dis-
plays the result in the memo covering the bottom part of the form:

procedure TFormAnimals.BtnKindClick(Sender: TObject);
begin
 Show(MyAnimal.GetKind);
end;

Late Binding and Polymorphism

Object Pascal functions and procedures are usually based on static binding, which is
also called early binding. This means that a method call is resolved by the compiler
or the linker, which replaces the request with a call to the specific memory location
where the compiled function or procedure resides. (This is also known as the
address of the function.) Object-oriented programming languages allow the use of
another form of binding, known as dynamic binding, or late binding. In this case,

Marco Cantù, Object Pascal Handbook

234 - 08: Inheritance

the actual address of the method to be called is determined at run time based on the
type of the instance used to make the call.

The advantage of this technique is known as polymorphism. Polymorphism means
you can write a call to a method, applying it to a variable, but which method Delphi
actually calls depends on the type of the object the variable relates to. Delphi cannot
determine until run time the actual class of the object the variable refers to, simply
because of the type-compatibility rule discussed in the previous section.

note Object Pascal methods default to early binding, like C++ and C#. One of the reasons is this is
more efficient. Java, instead, defaults to late binding (and offers ways to indicate to the compiler
it can optimize a method using early binding).

Suppose that a class and its subclass (let’s say TAnimal and TDog, again) both define
a method, and this method has late binding. Now you can apply this method to a
generic variable, such as MyAnimal, which at run time can refer either to an object of
class TAnimal or to an object of class TDog. The actual method to call is determined
at run time, depending on the class of the current object.

The Animals2 application project extends the Animals1 project to demonstrate this
technique. In the new version, the TAnimal and the TDog classes have a new method:
Voice, which means to output the sound made by the selected animal, both as text
and as sound. This method is defined as virtual in the TAnimal class and is later
overridden when we define the TDog class, by the use of the virtual and override
keywords:

type
 TAnimal = class
 public
 function Voice: string; virtual;

 TDog = class (TAnimal)
 public
 function Voice: string; override;

Of course, the two methods also need to be implemented. Here is a simple
approach:

function TAnimal.Voice: string;
begin
 Result := 'AnimalVoice';
end;

function TDog.Voice: string;
begin
 Result := 'ArfArf';
end;

Marco Cantù, Object Pascal Handbook

08: Inheritance - 235

Now what is the effect of the call MyAnimal.Voice? It depends. If the MyAnimal vari-
able currently refers to an object of the TAnimal class, it will call the method
TAnimal.Voice. If it refers to an object of the TDog class, it will call the method
TDog.Voice instead. This happens only because the function is virtual.

The call to MyAnimal.Voice will work for an object that is an instance of any descen-
dant of the TAnimal class, even classes that are defined after this method call or
outside its scope. The compiler doesn’t need to know about all the descendants in
order to make the call compatible with them; only the ancestor class is needed. In
other words, this call to MyAnimal.Voice is compatible with all future TAnimal sub-
classes.

This is the key technical reason why object-oriented programming languages favor
reusability. You can write code that uses classes within a hierarchy without any
knowledge of the specific classes that are part of that hierarchy. In other words, the
hierarchy—and the program—is still extensible, even when you’ve written thou-
sands of lines of code using it. Of course, there is one condition—the ancestor
classes of the hierarchy need to be designed very carefully.

The Animals2 application project demonstrates the use of these new classes and has
a form similar to that of the previous example. This code is executed by clicking on
the button, showing the output and also producing some sound:

begin
 Show (MyAnimal.Voice);
 MediaPlayer1.FileName := SoundsFolder + MyAnimal.Voice + '.wav';
 MediaPlayer1.Play;
end;

note The application uses a MediaPlayer component to play one of the two sound files that come with
the application (the sound files are named after the actual sounds, that is the values returned by
the Voice method). A rather random noise for the generic animal, and some barking for the dog.
Now the code works easily on Windows, as long as the files are in the proper folder, but it requires
some effort for the deployment on mobile platforms.

Take a look at the actual demo to see how the deployment and the folders were structured.

Overriding, Redefining, and Reintroducing
Methods

As we have just seen, to override a late-bound method in a descendant class, you
need to use the override keyword. Note that this can take place only if the method
was defined as virtual in the ancestor class. Otherwise, if it was a static method,

Marco Cantù, Object Pascal Handbook

236 - 08: Inheritance

there is no way to activate late binding, other than by changing the code of the
ancestor class.

note You might remember I used the same keyword also in the last chapter to override the Destroy
default destructor, inherited from the base TObject class.

The rules are simple: A method defined as static remains static in every subclass,
unless you hide it with a new virtual method having the same name. A method
defined as virtual remains late-bound in every subclass. There is no way to change
this, because of the way the compiler generates different code for late-bound meth-
ods.

To redefine a static method, you simply add a method to a subclass having the same
parameters or different parameters than the original one, without any further speci-
fications. To override a virtual method, you must specify the same parameters and
use the override keyword:

type
 TMyClass = class
 procedure One; virtual;
 procedure Two; // static method
 end;

 TMySubClass = class (MyClass)
 procedure One; override;
 procedure Two;
 end;

The redefined method, Two, has no late binding. So when you apply it to a variable of
the base class, it calls the base class method no matter what (that is, even if the vari-
able is referring to an object of the derived class, that has a different version for that
method).

There are typically two ways to override a method. One is to replace the method of
the ancestor class with brand a new version. The other is to add some more code to
the existing method. This second approach can be accomplished by using the
inherited keyword to call the same method of the ancestor class. For example, you
can write

procedure TMySubClass.One;
begin
 // new code
 ...
 // call inherited procedure TMyClass.One
 inherited One;
end;

You might wonder why you need to use the override keyword. In other languages,
when you redefine a virtual method in a subclass, you automatically override the

Marco Cantù, Object Pascal Handbook

08: Inheritance - 237

original one. However, having a specific keyword allows the compiler to check the
correspondence between the name of the method in the ancestor class and name of
the method in the subclass (misspelling a redefined function is a common error in
some other OOP languages), check that the method was virtual in the ancestor class,
and so on.

note There is another popular OOP language that has the same override keyword, C#. This is not sur-
prising, given the fact the languages share a common designer. Anders Hejlsberg has some
lengthly articles explaining why the override keyword is a fundamental versioning tool for design-
ing libraries, as you can read at http://www.artima.com/intv/nonvirtual.html. More
recently, Apple's Swift language has also adopted the override keyword to modify methods in
derived classes.

Another advantage of this keyword is that if you define a static method in any class
inherited by a class of the library, there will be no problem, even if the library is
updated with a new virtual method having the same name as a method you’ve
defined. Because your method is not marked by the override keyword, it will be
considered a separate method and not a new version of the one added to the library
(something that would probably break your existing code).

The support for overloading adds some further complexity to this picture. A sub-
class can provide a new version of a method using the overload keyword. If the
method has different parameters than the version in the base class, it becomes
effectively an overloaded method; otherwise it replaces the base class method. Here
is an example:

type
 TMyClass = class
 procedure One;
 end;

 TMySubClass = class (TMyClass)
 procedure One (S: string); overload;
 end;

Notice that the method doesn’t need to be marked as overload in the base class.
However, if the method in the base class is virtual, the compiler issues the warning
Method ‘One’ hides virtual method of base type ‘TMyClass.’

To avoid this message from the compiler and to instruct the compiler more precisely
on your intentions, you can use the specific reintroduce directive:

type
 TMyClass = class
 procedure One; virtual;
 end;

 TMySubClass = class (TMyClass)

Marco Cantù, Object Pascal Handbook

238 - 08: Inheritance

 procedure One (S: string); reintroduce; overload;
 end;

You can find this code in the ReintroduceTest application project and experiment
with it further.

note A scenario in which the reintroduce keyword is used is when you want to add a custom Create
constructor to a component class, that already inherits a virtual Create constructor from the
TComponent base class.

Inheritance and Constructors

As we have seen, you can use the inherited keyword to invoke same name method
(or also a different method) in a method of a derived class. The same is also true for
constructors. While in other languages like C++, C# or Java, the call to the base
class constructor is implicit and compulsory (when you have to pass parameters to
the base class constructor), in Object Pascal calling a base class constructor is not
strictly required.

In most cases, however, manually calling the base class constructor is extremely
important. This is the case, for example, for any component class, as the component
initialization is actually done a the TComponent class level:

constructor TMyComponent.Create (Owner: TComponent);
begin
 inherited Create (Owner);
 // specific code...
end;

This is particularly important because for components Create is a virtual method.
Similarly for all classes, the Destroy destructor is a virtual method and you should
remember calling inherited in it.

One question remains: If you are creating a class, which only inherits from TObject,
in its constructors do you need to call the base TObject.Create constructor? From a
technical point of view, and answer is “no” given that constructor is empty. How-
ever, I consider it s good habit to always call the base class constructor, no matter
what. If you are a performance maniac, however, I'll concede this can needlessly
slow down your code... by a completely unnoticeable fraction of microsecond.

Jokes aside, there are good reasons for both approaches, but particularly for a
beginner with the language I recommend always calling the base class constructor
as good programming habit, promoting safer coding.

Marco Cantù, Object Pascal Handbook

08: Inheritance - 239

Virtual versus Dynamic Methods

In Object Pascal, there are two different ways to activate late binding. You can
declare a method as virtual, as we have seen before, or declare it as dynamic. The
syntax of these two keywords is exactly the same, and the result of their use is also
the same. What is different is the internal mechanism used by the compiler to
implement late binding.

Virtual methods are based on a virtual method table (or VMT, but colloquially also
known as a vtable). A virtual method table is an array of method addresses. For a
call to a virtual method, the compiler generates code to jump to an address stored in
the nth slot in the object’s virtual method table.

Virtual method tables allow fast execution of the method calls. Their main drawback
is that they require an entry for each virtual method for each descendant class, even
if the method is not overridden in the subclass. At times, this has the effect of prop-
agating virtual method table entries throughout a class hierarchy (even for methods
that aren’t redefined). This might require a lot of memory just to store the same
method address a number of times.

Dynamic method calls, on the other hand, are dispatched using a unique number
indicating the method. The search for the corresponding function is generally
slower than the simple one-step table lookup for virtual methods. The advantage is
that dynamic method entries only propagate in descendants when the descendants
override the method. For large or deep object hierarchies, using dynamic methods
instead of virtual methods can result in significant memory savings with only a min-
imal speed penalty.

From a programmer’s perspective, the difference between these two approaches lies
only in a different internal representation and slightly different speed or memory
usage. Apart from this, virtual and dynamic methods are the same.

Now having explained the difference between these two models, it is important to
underline that in the largest number of cases, application developers use virtual
rather than dynamic.

Message Handlers on Windows

When you are building applications for Windows, a special purpose late-bound
method can be used to handle a Windows system message. For this purpose Object
Pascal provides yet another directive, message, to define message-handling meth-
ods, which must be procedures with a single var parameter of the proper type. The
message directive is followed by the number of the Windows message the method

Marco Cantù, Object Pascal Handbook

240 - 08: Inheritance

wants to handle. For example, the following code allows you to handle a user-
defined message, with the numeric value indicated by the wm_User Windows con-
stant:

type
 TForm1 = class(TForm)
 ...
 procedure WmUser (var Msg: TMessage); message wm_User;
 end;

The name of the procedure and the actual type of the parameters are up to you, as
long as the physical data structure matches the Windows message structure. The
units used to interface with the Windows API include a number of predefined
record types for the various Windows messages. This technique can be extremely
useful for veteran Windows programmers, who know all about Windows messages
and API functions, but it absolutely not compatible with other operating systems
(like OS X, iOS, and Android).

Abstracting Methods and Classes

When you are creating a hierarchy of classes, at times it is difficult to determine
which is the base class, given it might not represent an actual entity, but only be
used to hold some shared behavior. An example would be an animal base class for
something like a cat or a dog class. Such a class for which you are not expected to
create any object is often indicated as an abstract class, because it has no concrete
and complete implementation. An abstract class can have abstract methods, meth-
ods that don't have an actual implementation.

Abstract Methods

The abstract keyword is used to declare virtual methods that will be defined only in
subclasses of the current class. The abstract directive fully defines the method; it is
not a forward declaration. If you try to provide a definition for the method, the com-
piler will complain.

In Object Pascal, you can create instances of classes that have abstract methods.
However, when you try to do so, the compiler issues the warning message: Con-
structing instance of <class name> containing abstract methods. If you happen to
call an abstract method at run time, Delphi will raise a specific runtime exception.

Marco Cantù, Object Pascal Handbook

08: Inheritance - 241

note C++, Java, and other languages use a more strict approach: in these languages, you cannot create
instances of abstract classes.

You might wonder why you would want to use abstract methods. The reason lies in
the use of polymorphism. If class TAnimal has the virtual abstract method Voice,
every subclass can redefine it. The advantage is that you can now use the generic
MyAnimal object to refer to each animal defined by a subclass and invoke this
method. If this method was not present in the interface of the TAnimal class, the call
would not have been allowed by the compiler, which performs static type checking.
Using a generic MyAnimal object, you can call only the method defined by its own
class, TAnimal.

You cannot call methods provided by subclasses, unless the parent class has at least
the declaration of this method—in the form of an abstract method. The next appli-
cation project, Animals3, demonstrates the use of abstract methods and the
abstract call error. Here are the interfaces of the classes of this new example:

type
 TAnimal = class
 public
 constructor Create;
 function GetKind: string;
 function Voice: string; virtual; abstract;
 private
 Kind: string;
 end;

 TDog = class (TAnimal)
 public
 constructor Create;
 function Voice: string; override;
 function Eat: string; virtual;
 end;

 TCat = class (TAnimal)
 public
 constructor Create;
 function Voice: string; override;
 function Eat: string; virtual;
 end;

The most interesting portion is the definition of the class TAnimal, which includes a
virtual abstract method: Voice. It is also important to notice that each derived
class overrides this definition and adds a new virtual method, Eat. What are the
implications of these two different approaches? To call the Voice function, we can
simply write the same code as in the previous version of the program:

 Show (MyAnimal.Voice);

Marco Cantù, Object Pascal Handbook

242 - 08: Inheritance

How can we call the Eat method? We cannot apply it to an object of the TAnimal
class. The statement

 Show (MyAnimal.Eat);

generates the compiler error Field identifier expected.

To solve this problem, you can use a dynamic and safe type cast to treat the TAnimal
object as a TCat or as a TDog object, but this would be a very cumbersome and error-
prone approach:

begin
 if MyAnimal is TDog then
 Show (TDog(MyAnimal).Eat)
 else if MyAnimal is TCat then
 Show (TCat(MyAnimal).Eat);

This code will be explained later in the section “Safe Type Cast Operators”. Adding
the virtual method definition to the TAnimal class is a typical solution to the prob-
lem, and the presence of the abstract keyword favors this choice. The code above
looks ugly, and avoiding such a code is precisely the reason for using polymorphism.

Finally notice that when a class has an abstract method, it is often considered to be
an abstract class. However you can also specifically mark a class with the abstract
directive (and it will be considered an abstract class even if it has no abstract meth-
ods). Again, in Object Pascal this won't prevent you from creating an instance of the
class, so in this language the usefulness of an abstract class declaration is quite lim-
ited.

Sealed Classes and Final Methods

As I mentioned, Java has a very dynamic approach with late binding (or virtual
functions) being the default. For this reason the language introduced concepts like
classes you cannot inherit from (sealed) and methods you cannot override in
derived classes (final methods, or non-virtual methods).

Sealed classes are classes you cannot further inherit from. This might make sense if
you are distributing components (without the source code) or runtime packages and
you want to limit the ability of other developers to modify your code. One of the
original goals was also to increase runtime security, something you won't generally
need in a fully compiled language like Object Pascal.

Final methods are virtual methods you cannot further override in inherited classes.
Again, while they do make sense in Java (where all methods are virtual by default
and final methods are significantly optimized) they were adopted in C# where vir-

Marco Cantù, Object Pascal Handbook

08: Inheritance - 243

tual functions are explicitly marked and are much less important. Similarly, they
were added to Object Pascal, were they are rarely used.

In terms of syntax, this is the code of a sealed class:

type
 TDeriv1 = class sealed (TBase)
 procedure A; override;
 end;

Trying to inherit from it causes the error, “Cannot extend sealed class TDeriv1”.
This is the syntax of a final method:

type
 TDeriv2 = class (TBase)
 procedure A; override; final;
 end;

Inheriting from this class and overriding the A method causes the compiler error,
“Cannot override a final method”.

Safe Type Cast Operators

As we have seen earlier, the language type compatibility rule for descendant classes
allows you to use a descendant class where an ancestor class is expected. As I men-
tioned, the reverse is not possible.

Now suppose that the TDog class has an Eat method, which is not present in the
TAnimal class. If the variable MyAnimal refers to a dog, you might want to be able to
call the function. But if you try, and the variable is referring to another class, the
result is an error. By making an explicit typecast, we could cause a nasty run-time
error (or worse, a subtle memory overwrite problem), because the compiler cannot
determine whether the type of the object is correct and the methods we are calling
actually exist.

To solve the problem, we can use techniques based on run-time type information.
Essentially, because each object at run time “knows” its type and its parent class.
We can ask for this information with the is operator or using some of the methods
of the TObject class. The parameters of the is operator are an object and a class
type, and the return value is a Boolean:

if MyAnimal is TDog then
 ...

The is expression evaluates as True only if the MyAnimal object is currently referring
to an object of class TDog or a type descendant from and compatible with TDog. This

Marco Cantù, Object Pascal Handbook

244 - 08: Inheritance

means that if you test whether a TDog object stored in a TAnimal variable is really a
TDog object, the test will succeed. In other words, this expression evaluates as True if
you can safely assign the object (MyAnimal) to a variable of the data type (TDog).

note The actual implementation of the is operator is provided by the InheritsFrom method of the
TObject class. So you could write the same expression as MyAnimal.InheritsFrom(TDog). The
reason to use this method directly comes from the fact that it can also be applied to class refer-
ences and other special purpose types than don't support the is operator.

Now that you know for sure that the animal is a dog, you can use a direct type cast
(that would in general be unsafe) by writing the following code:

if MyAnimal is TDog then
begin
 MyDog := TDog (MyAnimal);
 Text := MyDog.Eat;
end;

This same operation can be accomplished directly by another related type cast oper-
ator, as, which converts the object only if the requested class is compatible with the
actual one. The parameters of the as operator are an object and a class type, and the
result is an object “converted” to the new class type. We can write the following
snippet:

MyDog := MyAnimal as TDog;
Text := MyDog.Eat;

If we only want to call the Eat function, we might also use an even shorter notation:

(MyAnimal as TDog).Eat;

The result of this expression is an object of the TDog class data type, so you can apply
to it any method of that class. The difference between the traditional cast and the
use of the as cast is that the second one checks the actual type of the object and
raises an exception if the type is not compatible with the type you are trying to cast
it to. The exception raised is EInvalidCast (exceptions are described in the next
chapter).

note By contrast, in the C# language the as expression will return nil if the object is not type-compati-
ble, while the direct type cast will raise an exception. So basically the two operations are reversed
compared to Object Pascal.

To avoid this exception, use the is operator and, if it succeeds, make a plain type-
cast (in fact there is no reason to use is and as in sequence, doing the type check
twice – although you'll often see the combined use of is and as):

if MyAnimal is TDog then
 TDog(MyAnimal).Eat;

Marco Cantù, Object Pascal Handbook

08: Inheritance - 245

Both type cast operators are very useful in Object Pascal because you often want to
write generic code that can be used with a number of components of the same type
or even of different types. For example, when a component is passed as a parameter
to an event-response method, a generic data type is used (TObject), so you often
need to cast it back to the original component type:

procedure TForm1.Button1Click(Sender: TObject);
begin
 if Sender is TButton then
 ...
end;

This is a common technique I’ll use it in some later examples (events are introduced
in Chapter 10).

The two type cast operators, is and as, are extremely powerful, and you might be
tempted to consider them as standard programming constructs. Although they are
indeed powerful, you should probably limit their use to special cases. When you
need to solve a complex problem involving several classes, try using polymorphism
first. Only in special cases, where polymorphism alone cannot be applied, should
you try using the type conversion operators to complement it.

note The use of the type cast operators has a slight negative impact on performance, because it must
walk the hierarchy of classes to see whether the typecast is correct. As we have seen, virtual
method calls just require a memory lookup, which is much faster.

Visual Form Inheritance

Inheritance is not only used in library classes or for the classes you write, but it's
quite pervasive of the entire development environment based around Object Pascal.
As we have seen, when you create a form in the IDE, this is an instance of a class
that inherits from TForm. So any visual application has a structure based on inheri-
tance, even in cases where you end up writing most your code in simple event
handlers.

What is less known, though, even by more experienced developers, is that you can
inherit a new form from one you've already created, a feature generally called visual
form inheritance (and something quite peculiar to Object Pascal development envi-
ronment).

The interesting element here is you can visually see the power of inheritance in
action, and directly figure out its rules! In this useful also in practice? Well, it mostly

Marco Cantù, Object Pascal Handbook

246 - 08: Inheritance

depends on the kind of application you are building. If it has a number of forms,
some of which are very similar to each other or simply include common elements,
then you can place the common components and the common event handlers in the
base form and add the specific behavior and components to the subclasses. Another
common scenario is to use visual form inheritance to customize some of the forms
of an applications for specific companies, without duplicating any source code
(which is the core reason for using inheritance in the first place).

You can also use visual form inheritance to customize an application for different
operating systems and form factors (phone to tablets, for example), without dupli-
cating any source code or form definition code; just inherit the specific versions for
a client from the standard forms. Remember that the main advantage of visual
inheritance is that you can later change the original form and automatically update
all the derived forms. This is a well-known advantage of inheritance in object-ori-
ented programming languages. But there is a beneficial side effect: polymorphism.
You can add a virtual method to a base form and override it in a subclassed form.
Then you can refer to both forms and call this method for each of them.

note Another approach in building forms with the same elements is to rely on frames, that is on visual
composition of form panels. In both cases at design time you can work on two versions of a form.
However, in visual form inheritance, you are defining two different classes (parent and derived),
whereas with frames, you work on a frame class and an instance of that frame hosted by a form.

Inheriting From a Base Form

The rules governing visual form inheritance are quite simple, once you have a clear
idea of what inheritance is. Basically, a subclass form has the same components as
the parent form as well as some new components. You cannot remove a component
of the base class, although (if it is a visual control) you can make it invisible. What’s
important is that you can easily change properties of the components you inherit.

Notice that if you change a property of a component in the inherited form, any mod-
ification of the same property in the parent form will have no effect. Changing other
properties of the component will affect the inherited versions, as well. You can
resynchronize the two property values by using the Revert to Inherited local menu
command of the Object Inspector. The same thing is accomplished by setting the
two properties to the same value and recompiling the code. After modifying multi-
ple properties, you can resynchronize them all to the base version by applying the
Revert to Inherited command of the component’s local menu.

Marco Cantù, Object Pascal Handbook

08: Inheritance - 247

Besides inheriting components, the new form inherits all the methods of the base
form, including the event handlers. You can add new handlers in the inherited form
and also override existing handlers.

To demonstrate how visual form inheritance works, I’ve built a very simple exam-
ple, called VisualInheritTest. I’ll describe step-by-step how to build it. First, start
a new mobile project, and add two buttons to its main form. Then select File  New,
and choose the “Inheritable Items” page in the New Items dialog box (see Figure
8.3). Here you can choose the form from which you want to inherit.

Figure 8.3:
The New Items dialog
box allows you to
create an inherited
form.

The new form has the same two buttons. Here is the initial textual description of the
new form:

inherited Form2: TForm2
 Caption = ‘Form2’
 ...
end

And here is its initial class declaration, where you can see that the base class is not
the usual TForm but the actual base class form:

type
 TForm2 = class(TForm1)
 private
 { Private declarations }
 public
 { Public declarations }
 end;

Notice the presence of the inherited keyword in the textual description; also notice
that the form indeed has some components, although they are defined in the base

Marco Cantù, Object Pascal Handbook

248 - 08: Inheritance

class form. If you change the caption of one of the buttons and add a new button the
textual description will change accordingly:

inherited Form2: TForm2
 Caption = 'Form2'
 ...
 inherited Button1: TButton
 Text = 'Hide Form'
 end
 object Button3: TButton
 ...
 Text = 'New Button'
 OnClick = Button3Click
 end
end

Only the properties with a different value are listed, because the others are simply
inherited as they are.

Figure 2.7:
The two forms of the
VirtualInheritTest
example at run time

Each of the buttons of the first form has an OnClick handler, with simple code. The
first button shows the second form calling its Show method; the second button a
simple message.

What happens in the inherited form? First we should change the behavior of the
Show button to implement it as a Hide button. This implies not executing the base
class event handler (so I've commented out the default inherited call). For the
Hello button, instead, we can add a second message to the one displayed by the base
class, by leaving the inherited call:

procedure TForm2.Button1Click(Sender: TObject);

Marco Cantù, Object Pascal Handbook

08: Inheritance - 249

begin
 // inherited;
 Hide;
end;

procedure TForm2.Button2Click(Sender: TObject);
begin
 inherited;
 ShowMessage ('Hello from Form2');
end;

Remember that differently from an inherited method, that can use the inherited
keyword to call the base class method with the same name, in an event handler the
inherited keyword stands for a call to the corresponding event handler of the base
form (regardless of the event handler method name).

Of course, you can also consider each method of the base form as a method of your
form, and call them freely. This example allows you to explore some features of vis-
ual form inheritance, but to see its true power you’ll need to look at more complex
real-world examples than this book has room to explore.

Marco Cantù, Object Pascal Handbook

250 - 08: Inheritance

Marco Cantù, Object Pascal Handbook

09: Handling Exceptions - 251

09: handling

exceptions

Before we proceed with the coverage of other features of classes in the Object Pascal
language, we need to focus on one particular group of objects used to handle error
conditions, known as exceptions.

The idea of exception handling is to make programs more robust by adding the
capability of handling software or hardware errors (and any other type of error) in a
simple and uniform way. A program can survive such errors or terminate gracefully,
allowing the user to save data before exiting. Exceptions allow you to separate the
error handling code from your normal code, instead of intertwining the two. You
end up writing code that is more compact and less cluttered by maintenance chores
unrelated to the actual programming objective.

Another benefit is that exceptions define a uniform and universal error-reporting
mechanism, which is also used by the component libraries. At run time, the system
raises exceptions when something goes wrong. If your code has been written prop-
erly, it can acknowledge the problem and try to solve it; otherwise, the exception is
passed to its calling code, and so on. Ultimately, if no part of your code handles the
exception, the system generally handles it, by displaying a standard error message

Marco Cantù, Object Pascal Handbook

252 - 09: Handling Exceptions

and trying to continue the program. In the unusual scenario your code is executed
outside of any exception handling block, raising an exception will cause the program
to terminate. The whole mechanism of exception handling in Object Pascal is based
on five separate keywords:

· try delimits the beginning of a protected block of code

· except delimits the end of a protected block of code and introduces the excep-
tion-handling code

· on marks the individual exception handling statements, tied to specific excep-
tions, each having the syntax on exception-type do statement

· finally is used to specify blocks of code that must always be executed, even
when exceptions occur

· raise is the statement used to trigger an exception and has as parameter an
exception object (this operation is called throw in other programming languages)

This is a simple comparison table of exception handling keywords in Object Pascal
with languages based on the C++ exceptions syntax (like C# and Java):

try try

except on catch

finally finally

raise throw

In general terms, using the C++ language terminology, you throw an exception
object and catch it by type. This is the same in Object Pascal, where you pass to the
raise statement an exception object and you receive it as a parameter of the except
on statements.

Try-Except Blocks

Let me start with a rather simple try-except example (part of the ExceptionsTest
application project), one that has a generic exception handling block:

function DividePlusOne (A, B: Integer): Integer;
begin
 try
 Result := A div B; // raises exception if B equals 0
 Inc (Result);
 except
 Result := 0;
 end;
 //more

Marco Cantù, Object Pascal Handbook

09: Handling Exceptions - 253

end;

note When you run a program in the debugger, the debugger will stop the program by default when an
exception is encountered, even if there is an exception handler. This is normally what you want, of
course, because you’ll know where the exception took place and can see the call of the handler
step-by-step. If you just want to let the program run when the exception is properly handled, and
see what a user would see, run the program with the “Run without debugging” command.

Not that “silencing” the exception and setting the result to 0 really makes a lot of
sense, but the code is good enough to understand the core mechanism in a reason-
able coding scenario. This is the code of the event handler used to call the function:

var
 N: Integer;
begin
 N := DividePlusOne (10, Random(3));
 Show (N.ToString);

As you can see the program uses a randomly generated value so that when you click
the button you can be in a valid situation (2 times out of 3) or in an invalid one. This
way there can be two different program flows:

· If B is not zero, the program does the division, executes the increment, and then
skips the except block up the end statement following it (//more)

· If B is zero, the division raises an exception, all of the following statements are
skipped (well, only one in this case) up to the first enclosing try-expect block,
which gets executed instead. After the exception block, the program won't get
back to the original statement, but skips until after the except block executing the
first statement after it (//more).

A way to describe this exception model is to say it follows an approach of non-
resumption. In case of an error, trying to handle the error condition and getting
back to the statement that caused it, is very dangerous, as the status of the program
at that point is probably undefined. Exceptions significantly change the execution
flow, skipping execution of the following statement and rolling back the stack until
the proper error handling code is found.

The code above had a very simple except block, with no on statement. When you
need to handle multiple types of exceptions (or multiple exception class types) or
want to access to the exception object passed to the block, you need to have one or
more on statements:

function DividePlusOneBis (A, B: Integer): Integer;
begin
 try
 Result := A div B; // error if B equals 0
 Result := Result + 1;

Marco Cantù, Object Pascal Handbook

254 - 09: Handling Exceptions

 except
 on E: EDivByZero do
 begin
 Result := 0;
 ShowMessage (E.Message);
 end;
 end;
end;

In the exception-handling statement, we catch the EDivByZero exception, which is
defined by the run-time library. There are a number of these exception types refer-
ring to run-time problems (such as a division by zero or a wrong dynamic cast), to
system problems (such as out-of-memory errors), or to component errors (such as a
wrong index). All of these exceptions classes inherit from the base class Exception,
which offers some minimal features like the Message property I used in the code
above. These classes form an actual hierarchy with some logical structure.

note Notice that while types in Object Pascal are generally marked with an initial letter T, exception
classes take an exception to the rule and generally start with the letter E.

The Exceptions Hierarchy

Here is a partial list of the core exception classes defined in the System.SysUtils
unit of the run-time library (most of the other system libraries add their own excep-
tion types):

Exception
 EArgumentException
 EArgumentOutOfRangeException
 EArgumentNilException
 EPathTooLongException
 ENotSupportedException
 EDirectoryNotFoundException
 EFileNotFoundException
 EPathNotFoundException
 EListError
 EInvalidOpException
 ENoConstructException
 EAbort
 EHeapException
 EOutOfMemory
 EInvalidPointer
 EInOutError
 EExternal
 EExternalException
 EIntError
 EDivByZero
 ERangeError

Marco Cantù, Object Pascal Handbook

09: Handling Exceptions - 255

 EIntOverflow
 EMathError
 EInvalidOp
 EZeroDivide
 EOverflow
 EUnderflow
 EAccessViolation
 EPrivilege
 EControlC
 EQuit
 EInvalidCast
 EConvertError
 ECodesetConversion
 EVariantError
 EPropReadOnly
 EPropWriteOnly
 EAssertionFailed
 EAbstractError
 EIntfCastError
 EInvalidContainer
 EInvalidInsert
 EPackageError
 ECFError
 EOSError
 ESafecallException
 EMonitor
 EMonitorLockException
 ENoMonitorSupportException
 EProgrammerNotFound
 ENotImplemented
 EObjectDisposed
 EJNIException

note I don't know about you, but I still have to figure out the exact usage scenario of what I consider
the most odd exception class, the EProgrammerNotFound exception.

Now that you have seen the core exceptions hierarchy, I can add one piece of infor-
mation to the previous description of the except-on statements. These statements
are evaluated in sequence until the system finds an exception class matching the
type of the exception object that was raised. Now the matching rule used is the type
compatibility rule we examined in the last chapter: an exception object is compati-
ble with any of the base types of its own specific type (like a TDog object was
compatible with the TAnimal class).

This means you can have multiple exception handler types that match the excep-
tion. If you want to be able to handle the more granular exceptions (the lower
classes of the hierarchy) along with the more generic one in case none of the previ-
ous matches, you have to list the handler blocks from the more specific to the more

Marco Cantù, Object Pascal Handbook

256 - 09: Handling Exceptions

generic (or from the child exception class up to its parent classes). Also, if you write
a handler for the type Exception it will be a catch-all clause.

Here is a code snippet with two handlers in one block:

function DividePlusOne (A, B: Integer): Integer;
begin
 try
 Result := A div B; // error if B equals 0
 Result := Result + 1;
 except
 on EDivByZero do
 begin
 Result := 0;
 MessageDlg (‘Divide by zero error’,
 mtError, [mbOK], 0);
 end;
 on E: Exception do
 begin
 Result := 0;
 MessageDlg (E.Message,
 mtError, [mbOK], 0);
 end;
 end; // end of except block
end;

In this code there are two different exception handlers after the same try block. You
can have any number of these handlers, which are evaluated in sequence as
explained above.

Keep in mind that using a handler for every possible exception is not usually a good
choice. It is better to leave unknown exceptions to the system. The default exception
handler generally displays the error message of the exception class in a message
box, and then resumes normal operation of the program.

note You can actually modify the normal exception handler by providing a method for the Applica-
tion.OnException event, for example logging the exception message in a file rather than
displaying it to the user.

Raising Exceptions

Most exceptions you’ll encounter in your Object Pascal programming will be gener-
ated by the system, but you can also raise exceptions in your own code when you
discover invalid or inconsistent data at run time.

Marco Cantù, Object Pascal Handbook

09: Handling Exceptions - 257

In most cases, for a custom exception you'll define your own exception type. Simply
create a new subclass of the default exception class or one of its existing subclasses
we saw above:

type
 EArrayFull = class (Exception);

In most cases, you don't need to add any methods or fields to the new exception
class and the declaration of an empty derived class will suffice.

The scenario for this exception type would be a method that adds elements to an
array raising an error when the array is full. This is accomplished by creating the
exception object and passing it to the raise keyword:

if MyArray.Full then
 raise EArrayFull.Create ('Array full');

This Create method (inherited from the base Exception class) has a string parame-
ter to describe the exception to the user.

note You don’t need to worry about destroying the object you have created for the exception, because it
will be deleted automatically by the exception-handler mechanism.

There is a second scenario for using the raise keyword. Within an except block you
might want to perform some actions but don't trap the exception, letting it flow to
the enclosing exception handler block. In this case, you can call raise with no
parameters. The operation is called re-raising an exception.

Exceptions and the Stack

When the program raises an exception and the current routine doesn’t handle it,
what happens to your method and function call stack? The program starts searching
for a handler among the functions already on the stack. This means that the pro-
gram exits from existing functions and does not execute the remaining statements.
To understand how this works, you can either use the debugger or add a number of
simple output lines, to be informed when a certain source code statement is exe-
cuted. In the next application project, ExceptionFlow, I’ve followed this second
approach.

For example, when you press the Raise1 button in the form of the ExceptionFlow
application project, an exception is raised and not handled, so that the final part of
the code will never be executed:

procedure TForm1.ButtonRaise1Click(Sender: TObject);
begin

Marco Cantù, Object Pascal Handbook

258 - 09: Handling Exceptions

 // unguarded call
 AddToArray (24);
 Show ('Program never gets here');
end;

Notice that this method calls the AddToArray procedure, which invariably raises the
exception. When the exception is handled, the flow starts again after the handler
and not after the code that raises the exception. Consider this modified method:

procedure TForm1.ButtonRaise2Click(Sender: TObject);
begin
 try
 // this procedure raises an exception
 AddToArray (24);
 Show ('Program never gets here');
 except
 on EArrayFull do
 Show ('Handle the exception');
 end;
 Show ('ButtonRaise1Click call completed');
end;

The last Show call will be executed right after the second one, while the first is always
ignored. I suggest that you run the program, change its code, and experiment with it
to fully understand the program flow when an exception is raised.

note Given the code location where you handle the exception is different than the one the exception
was raised, it would be nice to be able to know in which method the exception was actually raised.
While there are ways to get a stack trace when the exception is raised and make that information
available in the handler, this is really an advanced topic I don't plan to cover here. In most cases,
Object Pascal developers rely on third party libraries and tools (like JclDebug from Jedi Compo-
nent Library, MadExcept, or EurekaLog).

The Finally Block

There is a fourth keyword for exception handling that I’ve mentioned but haven’t
used so far, finally. A finally block is used to perform some actions (usually
cleanup operations) that should always be executed. In fact, the statements in the
finally block are processed whether or not an exception takes place. The plain code
following a try block, instead, is executed only if an exception was not raised or if it
was raised and handled. In other words, the code in the finally block is always exe-
cuted after the code of the try block, even if an exception has been raised.

Marco Cantù, Object Pascal Handbook

09: Handling Exceptions - 259

Consider this method (part of the ExceptFinally application project), which per-
forms some time-consuming operations and shows in the form caption its status:

procedure TForm1.btnWrongClick(Sender: TObject);
var
 I, J: Integer;
begin
 Caption := 'Calculating';

 J := 0;
 // long (and wrong) computation...
 for I := 1000 downto 0 do
 J := J + J div I;

 Caption := 'Finished';
 Show ('Total: ' + J.ToString);
end;

Because there is an error in the algorithm (as the variable I can reach a value of 0
and is also used in a division), the program will break, but it won’t reset the form
caption. This is what a try-finally block is for:

procedure TForm1.BtnTryFinallyClick(Sender: TObject);
var
 I, J: Integer;
begin
 Caption := 'Calculating';
 J := 0;
 try
 // long (and wrong) computation...
 for I := 1000 downto 0 do
 J := J + J div I;
 Show ('Total: ' + J.ToString);
 finally
 Caption := 'Finished';
 end;
end;

When the program executes this function, it always resets the cursor, whether an
exception (of any sort) occurs or not. The drawback to this version of the function is
that it doesn’t handle the exception.

Finally And Except

Curiously enough, in the Object Pascal language a try block can be followed by
either an except or a finally statement but not both at the same time. Given you'd
often want to have both blocks, the typical solution is to use two nested try blocks,
associating the internal one with a finally statement and the external one with an
except statement or vice versa, as the situation requires. Here is the code of this
third button of the ExceptFinally application project:

Marco Cantù, Object Pascal Handbook

260 - 09: Handling Exceptions

procedure TForm1.BtnTryTryClick(Sender: TObject);
var
 I, J: Integer;
begin
 Caption := 'Calculating';
 J := 0;
 try try
 // long (and wrong) computation...
 for I := 1000 downto 0 do
 J := J + J div I;
 Show ('Total: ' + J.ToString);
 except
 on E: EDivByZero do
 begin
 // re-raise the exception with a new message
 raise Exception.Create ('Error in Algorithm');
 end;
 end;
 finally
 Caption := 'Finished';
 end;
end;

Exceptions in the Real World

Exceptions are a great mechanism for error reporting and error handling at large
(that is not within a single code fragment, but as part of a larger architecture).
Exceptions in general should not be a substitute for checking a local error condition
(although some developers use them this way).

For example, if you are not sure about a file name, checking if a file exists before
opening is generally considered a better approach than opening the file anyway
using exceptions to handle the scenario the file is not there. However, checking if
there is still enough disk space before writing to the file, is a type of check that
makes little sense to do all over the places, as that is an extremely rare condition.

One way to put it is that a program should check for common error conditions and
leave the unusual and unexpected ones to the exception handling mechanism. Of
course, the line between the two scenarios are often blurred, and different develop-
ers will have different ways to judge.

Where you'd invariably use exceptions is for letting different classes and modules
pass error conditions to each other. Returning error codes is extremely tedious and
error prone compared to using exceptions. Raising exceptions is more common in a

Marco Cantù, Object Pascal Handbook

09: Handling Exceptions - 261

component or library class than in an event handler. You can end up writing a lot of
code without raising or handling exceptions.

What is extremely important and very common in every day code, instead, is using
finally blocks to protect resources in case of an exception. You should always pro-
tect blocks that refer to external resources with a finally statement, to avoid
resource leaks in case an exception is raised. Every time you open and close, con-
nect and disconnect, create and destroy something within a single function or
method, a finally statement is required.

Ultimately, a finally statement let you keep a program stable even in case an excep-
tion is raised, letting the user continue to use or (in case of more significant issues)
orderly shut down the application.

Global Exceptions Handling

If an exception raised by an event handler stops the standard flow of execution, will
it also terminate the program if no exception handler is found? This is really the
case for a console application or other special purpose code structures, while most
visual applications (included those based on the VCL or FireMonkey libraries) have
a global message handling loop that wraps each execution in a try-except block, so
that if an exception is raise in an event handler, this is trapped.

What happens at this point depends on the library, but there is a generally a pro-
grammatic way to intercept those exceptions with global handlers or a way to
display an error message. While some of the details differ, this is true for both VCL
and FireMonkey. In the previous demos, you saw a simple error message displayed
when an exception was raised.

If you want to change that behavior you can handle the OnException event of the
global Application object. Although this operation pertains more to the visual
library and event handling side of the application, it is also tied to the exception
handling so it is worth to cover it here.

I've taken the previous application project, called it ErrorLog, and I’ve added a new
method to the main form:

 public
 procedure LogException (Sender: TObject; E: Exception);

In the OnCreate event handler I've added the code to hook a method to the global
OnException event, and after that I've written the actual code of the global handler:

Marco Cantù, Object Pascal Handbook

262 - 09: Handling Exceptions

procedure TForm1.FormCreate(Sender: TObject);
begin
 Application.OnException := LogException;
end;

procedure TForm1.LogException(Sender: TObject; E: Exception);
begin
 Show('Exception ' + E.Message);
end;

note You'll learn the details of how you can assign a method pointer to an event (like I did above) in the
next chapter.

With the new method in the global exceptions handler, the program writes to the
output the error message, without stopping the application with an error message.

Exceptions and Constructors

There is a slightly more advanced issue surrounding exceptions, namely what hap-
pens when an exception is raised within the constructor of an object. Not all Object
Pascal programmers know that in such circumstances the destructor of that object
(if available) will be called.

This is important to know, because it implies that a destructor might be called for a
partially initialized object. Taking for granted that internal objects exist in a destruc-
tor because they are created in the constructor might get you into some dangerous
situations in case of actual errors (that is, raising another exception before the first
one is handled).

This also implies that the proper sequence for a try-finally should involve creat-
ing the object outside of the block, as it is automatically protected by the compiler.
So if the constructor fails there is no need to Free the object. This is why the stan-
dard coding style in Object Pascal is to protect an object by writing:

AnObject := AClass.Create;
try
 // use the object...
finally
 AnObject.Free;
end;

Marco Cantù, Object Pascal Handbook

09: Handling Exceptions - 263

note Something similar also happens for two special methods of the TObject class, AfterDestruction
and BeforeConstruction, a pseudo-constructor and a pseudo-destructor introduced for C++
compatibility (but seldom used in Object Pascal). Similarly to what happens with the plain con-
structor and destructor, if an exception is raised in the AfterConstruction, BeforeDestruction
is called (and also the plain destructor, of course).

Notice that you don't need to use the finally block when using the ARC-enabled
Object Pascal compilers, as in that case the release of the object memory is auto-
matic, as I'll detail in Chapter 13. Given I've often witnessed errors in properly
disposing of an object in a destructor, let me further clarify the issue with an actual
demo showing the problem... along with the actual fix. Suppose you have a class
including a string list, and that you write the following code to create and destroy
the class (part of the ConstructorExcept code):

type
 TObjectWithList = class
 private
 FStringList: TStringList;
 public
 constructor Create (Value: Integer);
 destructor Destroy; override;
 end;

constructor TObjectWithList.Create(Value: Integer);
begin
 if Value < 0 then
 raise Exception.Create('Negative value not allowed');

 FStringList := TStringList.Create;
 FStringList.Add('one');
end;

destructor TObjectWithList.Destroy;
begin
 FStringList.Clear;
 FStringList.Free;
 inherited;
end;

At first sight, the code seems correct. The constructor is allocating the sub-object
and the destructor is properly disposing it (which is required when using a non
ARC-enabled Object Pascal compiler). Moreover, the calling code is written in a way
that if an exception is raise after the constructor, the Free method is called, but if
the exception is in the constructor nothing happens:

var
 Obj: TObjectWithList;
begin
 Obj := TObjectWithList.Create (-10);
 try

Marco Cantù, Object Pascal Handbook

264 - 09: Handling Exceptions

 // do something
 finally
 Show ('Freeing object');
 Obj.Free;
 end;

So does this work? Absolutely not! When this code is involved an exception is raised
in the constructor, before creating the string list, and the system immediately
invokes the destructor, which tries to clear the non-existing list raising an access
violation or a similar error.

Why would this happen? Again, if you reverse the sequence in the constructor (cre-
ate the string list first, raise the exception later) everything works properly because
the destructor indeed needs to free the string list. But that isn't a real fix, only a
work around. What you should always consider is protecting the code of a destruc-
tor in a way it never assumes the constructor was completely executed. This is an
example:

destructor TObjectWithList.Destroy;
begin
 if Assigned (FStringList) then
 begin
 FStringList.Clear;
 FStringList.Free;
 end;
 inherited;
end;

Advanced Exceptions

This is one of the sections of the book you might want to skip the first time
you read it, as it might be a little too complex. Unless you have already a
good knowledge of the language, I suggest moving to the next chapter.

In the final part of the chapter, I'm going to cover some more advanced topics
related with exceptions handling. I'll cover nested exceptions (RaiseOuterExcep-
tion) and intercepting exceptions of a class (RaisingException). These features
were not part of the early versions of the Object Pascal language, and add significa-
tive power to the system.

Marco Cantù, Object Pascal Handbook

09: Handling Exceptions - 265

Nested Exceptions and the InnerException
Mechanism

What happens if you raise an exception within an exception handler? The tradi-
tional answer is that the new exception will replace the existing one, which is why it
is a common practice to combine at least the error messages, writing code like this
(lacking any actual operation, and showing only the exceptions-related statements):

procedure TFormExceptions.ClassicReraise;
begin
 try
 // do something...
 raise Exception.Create('Hello');
 except on E: Exception do
 // try some fix...
 raise Exception.Create('Another: ' + E.Message);
 end;
end;

This code is part of the AdvancedExcept application project. When calling the
method and handling the exception, you'll see a single exception with the combined
message:

procedure TFormExceptions.btnTraditionalClick(
 Sender: TObject);
begin
 try
 ClassicReraise;
 except
 on E: Exception do
 Show ('Message: ' + E.Message);
 end;
end;

The (quite obvious) output is:

Message: Another: Hello

Now in Object Pascal there is system-wide support for nested exceptions. Within an
exception handler, you can create and raise a new exception and still keep the cur-
rent exception object alive, connecting it to the new exception. To accomplish this,
the Exception class has an InnerException property, referring to the previous
exception, and a BaseException property that lets you access the first exception of a
series, as exception nesting can be recursive. These are the elements of the Excep-
tion class related to the management of nested exceptions:

type
 Exception = class(TObject)
 private
 FInnerException: Exception;

Marco Cantù, Object Pascal Handbook

266 - 09: Handling Exceptions

 FAcquireInnerException: Boolean;
 protected
 procedure SetInnerException;
 public
 function GetBaseException: Exception; virtual;
 property BaseException: Exception read GetBaseException;
 property InnerException: Exception read FInnerException;
 class procedure RaiseOuterException(E: Exception); static;
 class procedure ThrowOuterException(E: Exception); static;
 end;

note Static class methods are a special form of class methods. This language feature will be explained
in Chapter 12.

From the perspective of a user, to raise an exception while preserving the existing
one you should call the RaiseOuterException class method (or the identical
ThrowOuterException, which uses C++-oriented naming). When you handle a simi-
lar exception you can use the new properties to access further information. Notice
that you can call RaiseOuterException only within an exception handler as the
source code-based documentation tells:

Use this function to raise an exception instance from within an exception
handler and you want to "acquire" the active exception and chain it to the
new exception and preserve the context. This will cause the FInnerExcep-
tion field to get set with the exception currently in play.

You should only call this procedure from within an except block where this
new exception is expected to be handled elsewhere.

For an actual example you can refer to the AdvancedExcept application project. In
this example I've added a method that raises a nested exception in the new way
(compared to the ClassicReraise method listed earlier):

procedure TFormExceptions.MethodWithNestedException;
begin
 try
 raise Exception.Create ('Hello');
 except
 Exception.RaiseOuterException (
 Exception.Create ('Another'));
 end;
end;

Now in the handler for this outer exception we can access both exception objects
(and also see the effect of calling the new ToString method):

 try
 MethodWithNestedException;
 except
 on E: Exception do

Marco Cantù, Object Pascal Handbook

09: Handling Exceptions - 267

 begin
 Show ('Message: ' + E.Message);
 Show ('ToString: ' + E.ToString);
 if Assigned (E.BaseException) then
 Show ('BaseException Message: ' +
 E.BaseException.Message);
 if Assigned (E.InnerException) then
 Show ('InnerException Message: ' +
 E.InnerException.Message);
 end;
 end;

The output of this call is the following:

Message: Another
ToString: Another
Hello
BaseException Message: Hello
InnerException Message: Hello

There are two relevant elements to notice. The first is that in the case of a single
nested exception the BaseException property and the InnerException property
both refer to the same exception object, the original one. The second is that while
the message of the new exception contains only the actual message, by calling
ToString you get access to the combined messages of all the nested exceptions, sep-
arated by an sLineBreak (as you can see in the code of the method Exception.
ToString).

The choice of using a line break in this case produces odd looking output, but once
you know about it you can format it the way you like, replacing the line breaks with
a symbol of your choice or assigning them to the Text property of a string list.

As a further example, let me show you what happens when raising two nested
exceptions. This is the new method:

procedure TFormExceptions.MethodWithTwoNestedExceptions;
begin
 try
 raise Exception.Create ('Hello');
 except
 begin
 try
 Exception.RaiseOuterException (
 Exception.Create ('Another'));
 except
 Exception.RaiseOuterException (
 Exception.Create ('A third'));
 end;
 end;
 end;
end;

Marco Cantù, Object Pascal Handbook

268 - 09: Handling Exceptions

This called a method that is identical to the one we saw previously and produces the
following output:

Message: A third
ToString: A third
Another
Hello
BaseException Message: Hello
InnerException Message: Another

This time the BaseException property and the InnerException property refer to dif-
ferent objects and the output of ToString spans three lines.

Intercepting an Exception

Another advanced feature added over time to the original exception handling sys-
tem of the Object Pascal language is the method:

procedure RaisingException(P: PExceptionRecord); virtual;

According to the source code documentation:

This virtual function will be called right before this exception is about to be
raised. In the case of an external exception, this is called soon after the
object is created since the "raise" condition is already in progress.

The implementation of the function in the Exception class manages the inner
exception (by calling the internal SetInnerException), which probably explains why
it was introduced in the first place, at the same time as the inner exception mecha-
nism.

In any case, now that we have this feature available we can take advantage of it. By
overriding this method, in fact, we have a single post-creation function that is
invariably called, regardless of the constructor used to create the exception. In other
words, you can avoid defining a custom constructor for your exception class and let
users call one of the many constructors of the base Exception class, and still have
custom behavior. As an example, you can log any exception of a given class (or sub-
class).

This is a custom exception class (defined again in the AdvancedExcept application
project) that overrides the RaisingException method:

type
 ECustomException = class (Exception)
 protected
 procedure RaisingException(
 P: PExceptionRecord); override;
 end;

Marco Cantù, Object Pascal Handbook

09: Handling Exceptions - 269

procedure ECustomException.
 RaisingException(P: PExceptionRecord);
begin
 // log exception information
 FormExceptions.Show('Exception Addr: ' + IntToHex (
 Integer(P.ExceptionAddress), 8));
 FormExceptions.show('Exception Mess: ' + Message);

 // modify the message
 Message := Message + ' (filtered)';

 // standard processing
 inherited;
end;

What this method implementation does is to log some information about the excep-
tion, modify the exception message and then invoke the standard processing of the
base classes (needed for the nested exception mechanism to work). The method is
invoked after the exception object has been created but before the exception is
raised. This can be noticed because the output produced by the Show calls is gener-
ated before the exception is caught by the debugger! Similarly, if you put a
breakpoint in the RaisingException method, the debugger will stop there before
catching the exception.

Again, nested exceptions and this intercepting mechanism are not commonly used
in application code, as they are language features more meant for library and com-
ponent developers.

Marco Cantù, Object Pascal Handbook

270 - 09: Handling Exceptions

Marco Cantù, Object Pascal Handbook

10: Properties and Events - 271

10: properties and

events

In the last three chapters, I have covered the foundations of OOP in Object Pascal,
explaining these concepts and showing how features available in most object ori-
ented languages are specifically implemented. Since the early days of Delphi, the
Object Pascal language was a fully object-oriented language, but with a specific fla-
vor. In fact, it also doubled as the language of a component-based visual
development tool.

These are not disjoint features: The support for this development model is based on
some core language features, like properties and events, originally introduced in
Object Pascal before any other language, and later partially copied by a few OOP
languages. Properties for example can be found in Java and C#, among other lan-
guage, but they do have a direct ancestry to Object Pascal... although I personally
prefer the original implementation, as I'll explain shortly.

Object Pascal's ability to support rapid application development (RAD) and visual
programming is the reason for concepts like properties, the published access speci-
fier, events, the concept of a component, and a few other ideas covered in this
chapter.

Marco Cantù, Object Pascal Handbook

272 - 10: Properties and Events

Defining Properties

What is a property? Properties can be described as identifiers that let you access to
and modify the status of an object, potentially affecting its behavior through side
effects. In Object Pascal, properties abstract and hide data access via fields or meth-
ods, making them a primary implementation of encapsulation. One way to describe
properties is “encapsulation to the max”.

Technically, a property is an identifier with a data type that is mapped to some
actual data using some read and write specifier. Differently from Java or C#, in
Object Pascal the read and write specifier can be either a getter or setter method or
directly a field.

For example, here is the definition of a property for a date object using a common
approach (read from field, write using a method):

private
 FMonth: Integer;
 procedure SetMonth(Value: Integer);
public
 property Month: Integer read FMonth write SetMonth;

To access the value of the Month property, this code has to read the value of the pri-
vate field FMonth, while to change the value it calls the method SetMonth. The code
to change the value (protecting only against negative values) could be something
like:

procedure TDate.SetMonth (Value: Integer);
begin
 if Value <= 0 then
 FMonth := 1
 else
 FMonth := Value;
end;

Notice that the data type of the field and of the property must match exactly (if there
is a discrepancy, you can use a simple method for converting); similarly the type of
the single parameter of a setter procedure or the return value of a getter function
must exactly match the property type.

Different combinations are possible (for example, we could also use a method to
read the value or directly change a field in the write directive), but the use of a
method to change the value of a property is most common. Here are some alterna-
tive implementations for the same property:

property Month: Integer read GetMonth write SetMonth;
property Month: Integer read FMonth write FMonth;

Marco Cantù, Object Pascal Handbook

10: Properties and Events - 273

note When you write code that accesses a property, it is important to realize that a method might be
called. The issue is that some of these methods take some time to execute; they can also produce a
number of side effects, often including a (slow) repainting of the control on the screen. Although
side effects of properties are seldom documented, you should be aware that they exist, particu-
larly when you are trying to optimize your code.

The write directive of a property can also be omitted, making the property a read-
only property:

property Month: Integer read GetMonth;

Technically you can also omit the read directive and define a write-only property,
but that doesn’t usually make much sense and it is very rarely done.

Properties Compared to Other Programming
Langauges

Now if you compare this to Java or C#, in both languages the properties are mapped
to methods, but the first has implicit mapping (properties are basically a conven-
tion), while the latter has explicit mapping like Object Pascal, even if only to
methods:

// properties in Java language

private int mMonth;

public int getMonth() { return mMonth; }
public void setMonth(int value) {
 if (value <= 0)
 mMonth = 1;
 else
 mMonth = value;
}

int s = date.getMonth ();
date.setMonth (s+1);

// properties in C# language

private int mMonth;

public int Month {
 get { return mMonth; }
 set {
 if (value <= 0)
 mMonth = 1;
 else

Marco Cantù, Object Pascal Handbook

274 - 10: Properties and Events

 mMonth = value;
 }
}

date.Month++;

Not that I want to discuss in depth the relative merit of properties in the various
programming languages, but as I mentioned in the introduction to this chapter I
think that having explicitly defined properties is a useful idea, and also that the fur-
ther level of abstraction obtained by mapping properties to field without the extra
burden of a method is a very nice addition. That's why I prefer the Object Pascal
implementation of properties compared to other solutions.

Properties are a very sound OOP mechanism, a very well thought out application of
the idea of encapsulation. Essentially, you have a name that hides the implementa-
tion of how to access the information of a class (either accessing the data directly or
calling a method).

In fact, using properties you end up with an interface that is unlikely to change. At
the same time, if you only want to allow users access to some fields of your class,
you can easily wrap those fields into properties instead of making them public. You
have no further code to write (coding simple Get and Set methods is terribly bor-
ing), and you are still able to change the implementation of your class. Even if you
replace the direct data access with method-based access, you won’t have to change
the source code that uses these properties at all. You’ll only need to recompile it.
Think of this as the concept of encapsulation raised to the maximum power!

note You might wonder, if a property is defined with direct access to a private variable doesn't that
remove one of the advantages of encapsulation? The user cannot be protected against any change
in the private variable's datatype whereas they can be with getters and setters. However, given the
user will access the data via the property, the class developer can at any time change the underly-
ing data type and introduce getters and setters, without affecting the code using it. This is why I
called this “encapsulation to the max”. On the other hand, this shows the pragmatic side of Object
Pascal, in that it allows the programmer a choice of any easier way (and fast code execution)
where it fits the circumstances, and a smooth transition to a “proper OOP” way when that is
needed.

There is one caveat in using properties in Object Pascal, though. You can usually
assign a value to a property or read it, and you can freely use properties in expres-
sions. However, you cannot pass a property as a reference parameter to a procedure
or method. This is because a property is not a memory location but an abstraction,
so it cannot be used as a reference (var) parameter. As an example, unlike C# you
cannot call Inc on a property.

Marco Cantù, Object Pascal Handbook

10: Properties and Events - 275

note A related feature, passing properties by reference, is described later in this chapter. However it is
a little used feature that requires a specific compiler setting to be enabled, and is certainly not a
mainstream capability.

Code Completion for Properties

If adding properties to a class might seem tedious work, the editor of the IDE lets
you easily auto-complete properties when you write the initial part of a property
declaration (within a class), like the following:

type
 TMyClass = class
 public
 property Month: Integer;
 end;

Press the Ctrl+Shift+C key combination while the cursor in on the property decla-
ration and you'll get a new field added to the class along with a new setter method,
with the proper mapping in the property definition and the complete implementa-
tion of the setter method, which adds up changing the property value as expected.
In other words, the code above with a single key stroke (or using the equivalent item
of the local menu of the editor) becomes:

type
 TMyClass = class
 private
 FMonth: Integer;
 procedure SetMonth(const Value: Integer);
 public
 property Month: Integer read FMonth write SetMonth;
 end;

{ TMyClass }
procedure TMyClass.SetMonth(const Value: Integer);
begin
 FMonth := Value;
end;

Would you want also a getter method, replace the read portion of the definition with
GetMonth, like in:

property Month: Integer read GetMonth write SetMonth;

Than press Ctrl+Shift+C again and the function will also be added, but this time
with no predefined code for accessing the value:

function TMyClass.GetMonth: Integer;
begin

Marco Cantù, Object Pascal Handbook

276 - 10: Properties and Events

end;

Adding Properties to Forms

Let's look at a specific example of encapsulation using properties. Rather than
building a custom class, this time I'm going to modify the form class that the IDE
generates for each visual form you create... and I'm also going to take advantage of
Class Completion.

When an application has multiple forms, it is often handy to be able to access to
information of one form from another. You might be tempted to add a public field,
but that's invariably a bad idea. Every time you want to make some information of a
form available to other forms, you should rather use a property.

Simply write in the form class declaration the property name and type:

property Clicks: Integer;

Then press Ctrl+Shift+C to activate Code Completion. You’ll see the following
effect:

type
 TFormProp = class(TForm)
 private
 FClicks: Integer;
 procedure SetClicks(const Value: Integer);
 public
 property Clicks: Integer
 read FClicks write SetClicks;
 end;

implementation

procedure TForm1.SetClicks(const Value: Integer);
begin
 FClicks := Value;
end;

Needless to say this saves you a lot of typing. Now when a user clicks on a form you
can increase the click count by writing the following line, as I've done in the
OnMouseDown event of the form of the FormProperties application project:

Clicks := Clicks + 1;

You might wonder, what about increasing FClicks directly? Well, in this specific
scenario that might work, but you might as well use the SetClicks method to
update the user interface and actually display the current value: If you bypass the
property and access the field directly, the side effects of the setter won't be executed
and the display might get out of sync.

Marco Cantù, Object Pascal Handbook

10: Properties and Events - 277

The other advantage of this encapsulation is that from another form you would be
able to refer to the number of clicks, in a properly abstracted way. In fact, properties
in form classes can be used to access custom values but also to encapsulate the
access to the components of the form. For example, if you have a form with a label
used to display some information, and you want to modify the text from a secondary
form, you might be tempted to write:

Form1.StatusLabel.Text := 'new text';

This is a common practice, but it’s not a good one because it doesn’t provide any
encapsulation of the form structure or components. If you have similar code in
many places throughout an application, and you later decide to modify the user
interface of the form (replacing the StatusLabel object with another control), you’ll
have to fix the code in many places.

The alternative is to use a method or, even better, a property, to hide the specific
control. You can follow the steps above to add a property with both reading and
writing methods, or type them in full like in:

 property StatusText: string read GetStatusText write SetStatusText;

and press the Ctrl+Shift+C combination again, to let the editor add the definition of
both methods for reading and writing the property:

function TFormProp.GetStatusText: string;
begin
 Result := LabelStatus.Text
end;

procedure TFormProp.SetStatusText(const Value: string);
begin
 LabelStatus.Text := Value;
end;

Notice that in this case the property is not mapped to a local field of a class, but to
the field of a sub-object, the label (in case you used automatic code generation,
remember to actually delete the FStatusText property the editor might have added
on your behalf).

In the other forms of the program, you can simply refer to the StatusText property
of the form, and if the user interface changes, only the Set and Get methods of the
property are affected. Also you can even do the same inside the original form, mak-
ing the code of the two properties more independent:

procedure TFormProp.SetClicks(const Value: Integer);
begin
 FClicks := Value;
 StatusText := FClicks.ToString + ' clicks';
end;

Marco Cantù, Object Pascal Handbook

278 - 10: Properties and Events

Adding Properties to the TDate Class

In the Chapter 7 I built a TDate class. Now we can extend it by using properties. This
new application project, DateProperties, is basically an extension of the ViewDate
application project of Chapter 7. Here is the new declaration of the class. It has
some new methods (used to set and get the values of the properties) and four prop-
erties:

type
 TDate = class
 private
 fDate: TDateTime;
 function GetYear: Integer;
 function GetDay: Integer;
 function GetMonth: Integer;
 procedure SetDay (const Value: Integer);
 procedure SetMonth (const Value: Integer);
 procedure SetYear (const Value: Integer);
 public
 constructor Create; overload;
 constructor Create (y, m, d: Integer); overload;
 procedure SetValue (y, m, d: Integer); overload;
 procedure SetValue (NewDate: TDateTime); overload;
 function LeapYear: Boolean;
 procedure Increase (NumberOfDays: Integer = 1);
 procedure Decrease (NumberOfDays: Integer = 1);
 function GetText: string; virtual;
 property Day: Integer read GetDay write SetDay;
 property Month: Integer read GetMonth write SetMonth;
 property Year: Integer read GetYear write SetYear;
 property Text: string read GetText;
 end;

The Year, Day, and Month properties read and write their values using corresponding
methods. Here are the two related to the Month property:

function TDate.GetMonth: Integer;
var
 y, m, d: Word;
begin
 DecodeDate (fDate, y, m, d);
 Result := m;
end;

procedure TDate.SetMonth(const Value: Integer);
begin
 if (Value < 1) or (Value > 12) then
 raise EDateOutOfRange.Create (‘Invalid month’);
 SetValue (Year, Value, Day);
end;

Marco Cantù, Object Pascal Handbook

10: Properties and Events - 279

The call to SetValue performs the actual encoding of the date, raising an exception
in the case of an error. I’ve defined a custom exception class, which is raised every
time a value is out of range:

type
 EDateOutOfRange = class (Exception);

The fourth property, Text, maps only to a read method. This function is declared as
virtual, because it is replaced by the TNewDate subclass. There is no reason the Get
or Set method of a property should not use late binding (a feature explained at
length in Chapter 8).

note What is important to acknowledge in this example is that the properties do not map directly to
data. They are simply computed from information stored in a different type and with a different
structure than the properties seem to imply.

Having updated the class with the new properties, we can now update the example
to use properties when appropriate. For example, we can use the Text property
directly, and we can use some edit boxes to let the user read or write the values of
the three main properties. This happens when the btnRead button is pressed:

procedure TDateForm.BtnReadClick(Sender: TObject);
begin
 EditYear.Text := IntToStr (TheDay.Year);
 EditMonth.Text := IntToStr (TheDay.Month);
 EditDay.Text := IntToStr (TheDay.Day);
end;

The btnWrite button does the reverse operation. You can write the code in either of
the two following ways:

// direct use of properties
TheDay.Year := StrToInt (EditYear.Text);
TheDay.Month := StrToInt (EditMonth.Text);
TheDay.Day := StrToInt (EditDay.Text);

// update all values at once
TheDay.SetValue (StrToInt (EditMonth.Text),
 StrToInt (EditDay.Text),
 StrToInt (EditYear.Text));

The difference between the two approaches relates to what happens when the input
doesn’t correspond to a valid date. When we set each value separately, the program
might change the year and then raise an exception and skip executing the rest of the
code, so that the date is only partially modified. When we set all the values at once,
either they are correct and are all set, or one is invalid and the date object retains
the original value.

Marco Cantù, Object Pascal Handbook

280 - 10: Properties and Events

Using Array Properties

Properties generally let you access a single value, even if one of a complex data type.
Object Pascal also defined array properties, or indexers as they are called in C#. An
array property is a property with a further parameter of any data type that is used as
an index or (more in general) a selector of the actual value.

Here is an example of definition of an array property that uses an Integer index and
refers to an integer value:

 private
 function GetValue(I: Integer): Integer;
 procedure SetValue(I: Integer; const Value: Integer);
 public
 property Value [I: Integer]: Integer read GetValue write SetValue;

An array property must be mapped to read and write methods that have an extra
parameter representing the index... and you can use Code Completion to define the
methods as for a regular property. There are many combinations of values and
indexes and a few classes in the RTL make a lot of use of array properties. For
example, the TStrings class defines 5 of them:

 property Names[Index: Integer]: string read GetName;
 property Objects[Index: Integer]: TObject
 read GetObject write PutObject;
 property Values[const Name: string]: string
 read GetValue write SetValue;
 property ValueFromIndex[Index: Integer]: string
 read GetValueFromIndex write SetValueFromIndex;
 property Strings[Index: Integer]: string
 read Get write Put; default;

While most of these array properties use the index of the string as parameter in the
list, others use a string as a lookup or search value (like the Values property above).
The last of these definitions uses another important feature: it is marked with the
default keyword. This is a powerful syntax helper: the name of an array property
can be omitted, so that you can apply the square bracket operator directly to the
object in question. So if you have an object sList of this TStrings type, both of the
following statements will read the same value:

sList.Strings[1]
sList[1]

In other words, default array properties offer a way to define a custom [] operator
for any object.

Marco Cantù, Object Pascal Handbook

10: Properties and Events - 281

Setting Properties by Reference

This is a rather advanced topic (and a little used feature) you should prob-
ably skip if you are not already experienced in Object Pascal. BUt if you
are, there are chances you never heard of this capability.

At the time the Object Pascal compiler was extended to natively support Windows
COM programming, it got the ability to handle “put by ref” properties (in COM jar-
gon) or properties that can receive a reference, rather than a value.

note “Put by ref” is the name Chris Bensen gave to this feature in his blog post introducing it:
http://chrisbensen.blogspot.com/2008/04/delphi-put-by-ref-properties.html (Chris at the time
was an R&D engineer for the product).

This is accomplished by using a var parameter in the setter method. Given this can
lead to rather awkward scenarios, the feature (while still part of the language) is
considered more of an exception than a rule, which is why it is not active by default.
In other words, to enable this feature you have to ask specifically for it using a com-
piler directive:

{$VARPROPSETTER ON}

Without this directive, the following code won't compile and will issue the error
“E2282 Property setters cannot take var parameters”:

type
 TMyIntegerClass = class
 private
 fNumber: Integer;
 function GetNumber: Integer;
 procedure SetNumber(var Value: Integer);

 public
 property Number: Integer
 read GetNumber write SetNumber;
 end;

This class is part of the VarProp application project. Now what is very odd is that
you can have side effects within the property setter:

procedure TMyIntegerClass.SetNumber(var Value: Integer);
begin
 Inc (Value); // side effect
 fNumber := Value;
end;

The other very unusual effect is that you cannot assign a constant value to the prop-
erty, only a variable (which should be expected, as with any call involving a
parameter passed by reference):

Marco Cantù, Object Pascal Handbook

282 - 10: Properties and Events

var
 mic: TMyIntegerClass;
 n: Integer;
begin
 ...
 mic.Number := 10; // Error: E2036 Variable required
 mic.Number := n;

While not a feature you'd regularly use, this is a rather advanced way of thinking
about a property that lets you initialize or alter the value assigned to it. This can lead
to extremely odd code like:

 n := 10;
 mic.Number := n;
 mic.Number := n;
 Show(mic.Number.ToString);

The two consecutive, identical assignments look rather odd, but they do produce a
side effect, turning the actual number into 12. Probably the most convoluted and
nonsensical way to obtain that result...

The published Access Specifier

Along with the public, protected, and private access directives (and the less-com-
monly used strict private and strict protected), the Object Pascal language
has another very peculiar one, called published. A published property (or field or
method) is not only available at run time like a public one, but it generates extended
run-time time information (RTTI) that can be queried.

In a compiled language, in fact, the compiled symbols are processed by the compiler
and can be used by the debugger while testing the application, but generally leave
no track at runtime. In other words (at least in the early times of Object Pascal) if a
class has a property called Name you can use it in your code to interact with the class,
but you have no way to figure out if a class has a property matching a given string,
“Name”.

note Both the Java and the C# languages are compiled languages that take advantage of a complex vir-
tual execution environment and for this reason they have extensive runtime information,
generally called reflection. The Object Pascal language introduced reflection (also called extended
RTTI) after some years, so it still has both some basic RTTI tied to the published keyword and
explored in this chapter and a more comprehensive form of reflection covered in Chapter 16.

Why is this extra information about a class required? It is one of the foundations of
the component model and visual programming model the Object Pascal libraries

Marco Cantù, Object Pascal Handbook

10: Properties and Events - 283

rely upon. Some of this information is used at design time in the development envi-
ronment, to populate the Object Inspector with a list of properties a component
provides. This isn't a hard coded list, but something generated via runtime inspec-
tion of the compiled code.

Another example, probably a little too complex to fully delve into now, is the
streaming mechanism behind the creation of the FMX and DFM files and an accom-
panying visual form. Streaming will be introduced only in Chapter 18 because it is
more part of the runtime library than of the core language.

To summarize the concept, a regular use of published keyword is important when
you write components to be used by yourself or others in the development environ-
ment. Usually, the published portions of a component contains only properties,
while form classes also use published fields and methods, as I'll cover later.

Design Time Properties

We have seen earlier in this chapter that properties play an important role for the
encapsulation of the data of a class. They also play a fundamental role in enabling
the visual development model. In fact, you can write a component class, make it
available in the development environment, create an object by adding it to a design
surface, and interact with its properties with the Object Inspector. Not all properties
can be used in this scenario, only those marked as published in the component
class.

This is why Object Pascal programmers make a distinction between design-time
properties and run-time only properties. Design-time properties are those declared
in a published section of the class declaration, and can be used at design time in the
IDE, and also in code. Any other property that is declared in the public section of
the class is not available at design time but only in code, and it is often called run-
time only.

In other words, you can see the value and change the values of published properties
at design time using the Object Inspector. This is the tool that the visual program-
ming environment provides to give access to properties. At run time, you can access
any public or published property of another class in the exact same way by reading
or writing its value in code.

Not all of the classes have properties. Properties are present in components and in
other subclasses of the TPersistent class, because properties usually can be
streamed and saved to a file. A form file, in fact, is nothing but a collection of pub-
lished properties of the components on the form.

Marco Cantù, Object Pascal Handbook

284 - 10: Properties and Events

To be more precise, you don't need to inherit from TPersistent to support the con-
cept of a published section, but you need to compile a class with the $M compiler
directive. Each class compiled with that directive, or derived from a class compiled
with it, supports the published section. Given TPersistent is compiled with this set-
ting, any derived class has this support.

note The following two sections on default visibility and automatic RTTI add further information to the
effect of the $M directive and the published keyword.

Published and Forms

When the IDE generates a form, it places the definitions of its components and
methods in the initial portion of its definition, before the public and private key-
words. These fields and methods of the initial portion of the class are published.
The default is published when no special keyword is added before an element of a
component class.

note To be more precise, published is the default keyword only if the class was compiled with the
$M+ compiler directive or is descended from a class compiled with $M+. As this directive is used in
the TPersistent class, most classes of the library and all of the component classes default to
published. However, non-component classes (such as TStream and TList) are compiled with
$M- and default to public visibility.

Here is an example:

type
 TForm1 = class(TForm)
 Memo1: TMemo;
 btnTest: TButton;

The methods assigned to any event should be published methods, and the fields
corresponding to your components in the form should be published to be automati-
cally connected with the objects described in the form file and created along with
the form. Only the components and methods in the initial published part of your
form declaration can show up in the Object Inspector (in the list of components of
the form or in the list of the available methods displayed when you select the drop-
down list for an event).

Why should the components of a class be declared with published field, while they
could be private and better follow OOP encapsulation rules? The reason lies in the
fact that these components are created by reading their streamed representation,
but once they are created they need to be assigned to the corresponding form fields.

Marco Cantù, Object Pascal Handbook

10: Properties and Events - 285

This is done using the RTTI generated for published fields (which was originally the
only kind of RTTI available in Object Pascal until extended RTTI, covered in Chap-
ter 16, was introduced).

note Technically it is not really compulsory to use published fields for components. You can make your
code more OOP savvy by making them private. However, this does require extra runtime code. I'll
explain this a little more in the last section of this chapter, “RAD and OOP”.

Automatic RTTI

Another special behavior of the Object Pascal compiler, is that if you add the pub-
lished keyword to a class, which doesn't inherit from TPersistent, the compiler will
automatically enable RTTI generation automatically adding the {$M+} behavior.

Suppose you have this class:

type
 TMyTestClass = class
 private
 FValue: Integer;
 procedure SetValue(const Value: Integer);
 published
 property Value: Integer read FValue write SetValue;
 end;

The compiler shows a warning like:

[dcc32 Warning] AutoRTTIForm.pas(27): W1055 PUBLISHED caused RTTI ($M+)
to be added to type 'TMyTestClass'

What happens is that the compiler automatically injects the {$M+} directive in the
code, as you can see in the AutoRTTI application project, which include the code
above. In this program, you can write the following code, that uses a dynamic access
to a property (using the old-fashioned System.TypInfo unit):

uses
 TypInfo;

procedure TFormAutoRtti.btnTetClick(Sender: TObject);
var
 test1: TMyTestClass;
begin
 test1 := TMyTestClass.Create;
 try
 test1.Value := 22;
 Memo1.Lines.Add (GetPropValue (test1, 'Value'));
 finally
 test1.Free;
 end;

Marco Cantù, Object Pascal Handbook

286 - 10: Properties and Events

end;

note Although I'll occasionally use the TypInfo unit and functions like GetPropValue defined in it, the
real power of RTTI access is given by the more modern RTTI unit and its extensive support for
reflection. Given this is a rather complex topic, I felt it important to devote a separate chapter to
it, and also to distinguish the two flavors of RTTI that Object pascal supports.

Event-Driven Programming

In a component-based library (but also in many other scenarios) the code you write
is not just a flat sequence of actions, but mostly a collection of reactions. By that I
mean you define how the application should “react” when something happens. This
“something” could be a user operation, such as clicking on a button, a system opera-
tion, a change in the status of a sensor, some data becoming available over a remote
connection, or just about anything else.

These external or internal triggers of actions are generally called events. Events
were originally a mapping of message-oriented operating systems, like Windows,
but have come a long way since that original concept. In modern libraries, in fact,
most events are triggered internally when you set properties, call methods, or inter-
act with a given component (or indirectly with another one).

How do events and event-driven programming relate with OOP? The two
approaches are different in respect to when and how you create a new inherited
class compared to using a more general one.

In a pure form of object-oriented programming, whenever an object has a different
behavior (or a different method) than another one, it should belong to a different
class. We have seen this is a few demos.

Now let's consider this scenario. A form has four buttons. Each button requires a
different behavior when you click on it. So in pure OOP terms, you should have four
different button subclasses each with a different version of a “click” method. This
approach is formally correct, but turns out to be extremely demanding in terms of
extra code to write, and not very flexible.

Event-driven programming considers a similar scenario and suggests the developer
to add some behavior to button objects that are all of the same class. The behavior
becomes a decoration or extension of the object status, without requiring a new
class. The model is also called delegation, because the behavior of an object is dele-
gated to a method of a class other than the object's own class.

Marco Cantù, Object Pascal Handbook

10: Properties and Events - 287

Events are implemented in different ways by different programming languages, for
example:

· Using references to methods (called method pointers as in Object Pascal) or to
event objects with an internal method (as happens in C#)

· Delegating events code to a specialized class implementing an interface (like it
generally happens in Java)

· Using closures like it generally happens in JavaScript (an approach Object Pascal
also supports with anonymous methods, covered in Chapter 15), although in
JavaScript all methods are closures so the differences between the two concepts
are a bit blurred in that language.

If the concept of events and event-driven programming has been quite common
over the last decade and it is supported by many different programming languages,
the way Object Pascal implements support for events is quite unique, as the follow-
ing sections will explain in details.

Method Pointers

We have seen in the last part of Chapter 4 that the language has the concept of func-
tion pointer. This is a variable holding the memory location of a function, that you
can use to call the function indirectly. A function pointer is declared with a specific
signature (as set of parameter types and a return type, if any).

Similarly, the language has the concept of method pointer. A method pointer is a
reference to the memory location of a method that belongs to a class. Like a function
pointer type, the method pointer type has a specific signature. However, a method
pointer carries over some more information, that that is the object the method will
be applied to (or, in other words, the object that will be used as self parameter
when the method is called).

In other words, a method pointer is a reference to a method (at a specific memory
address) for one specific object in memory. When you assign a value to a method
pointer, you have to refer to a method of a given object!

note You can better understand the implementation of a method pointer if you look at the definition of
the data structure often used at the low-level to express this construct, which is called TMethod.
This record has two fields Code and Data, representing respectively the method address and the
object it will be applied to. In other like languages the code reference is captured by a delegate
class (C#) or a method of an interface (Java).

Marco Cantù, Object Pascal Handbook

288 - 10: Properties and Events

The declaration of a method pointer type is similar to that of a procedural type,
except that it has the keywords of object at the end of the declaration:

type
 IntProceduralType = procedure (Num: Integer);
 TStringEventType = procedure (const s: string) of object;

When you have declared a method pointer, such as the one above, you can declare a
variable of this type and assign to it a compatible method of any object. What’s a
compatible method? One that has the same parameters as those requested by the
method pointer type, such as a single string parameter in the example above.

note The reference to a method of any object can be assigned to a method pointer as long as it is com-
patible with the method pointer type.

Now that you have a method pointer type, you can declare a variable of this type and assign
a compatible method to it:

type
 TEventTest = class
 public
 procedure ShowValue (const s: string);
 procedure UseMethod;
 end;

procedure TEventTest.ShowValue (const s: string);
begin
 Show (s);
end;

procedure TEventTest.UseMethod;
var
 StringEvent: TStringEventType;
begin
 StringEvent := ShowValue;
 StringEvent ('Hello');
end;

Now this simple code doesn't really explain the usefulness of events, as it focused on
the low-level method pointer type concept. Events are based on this technical imple-
mentation, but go beyond it by storing a method pointer in one object (say, a
button) to refer to a method of a different object (say, the form with the OnClick
hander for the button). In most cases, also, events are implemented using proper-
ties.

Marco Cantù, Object Pascal Handbook

10: Properties and Events - 289

note While it is much less common, in Object Pascal you can also use anonymous methods to define an
event handler. The reason this is less common is probably as the feature was introduced fairly
recently in the language, and many libraries already existed at that point. Moreover, it adds a lit-
tle extra complexity. You can find an example of that approach in Chapter 15. Another possible
extension is the definition of multiple handlers for a single event, like C# supports, which is not a
standard feature but one that you could implement yourself.

The Concept of Delegation

At first glance, the goal of this technique may not be clear, but this is one of the cor-
nerstones of Object Pascal component technology. The secret is in the word
delegation. If someone has built an object that has some method pointers, you are
free to change the object’s behavior simply by assigning new methods to the point-
ers. Does this sound familiar? It should.

When you add an OnClick event handler for a button, the development environ-
ment does exactly that. The button has a method pointer, named OnClick, and you
can directly or indirectly assign a method of the form to it. When a user clicks the
button, this method is executed, even if you have defined it inside another class
(typically, in the form).

What follows is a listing that sketches the code actually used in Object Pascal
libraries to define the event handler of a button component and the related method
of a form:

type
 TNotifyEvent = procedure (Sender: TObject) of object;

 TMyButton = class
 OnClick: TNotifyEvent;
 end;

 TForm1 = class (TForm)
 procedure Button1Click (Sender: TObject);
 Button1: TMyButton;
 end;

var
 Form1: TForm1;

Now inside a procedure, you can write

MyButton.OnClick := Form1.Button1Click;

The only real difference between this code fragment and the code of the library is
that OnClick is a property name, and the actual data it refers to is called FOnClick.

Marco Cantù, Object Pascal Handbook

290 - 10: Properties and Events

An event that shows up in the Events page of the Object Inspector, in fact, is nothing
more than a property that is a method pointer.

This means, for example, that you can dynamically modify the event handler
attached to a component at design time or even build a new component at run time
and assign an event handler to it.

The DynamicEvents application project showcases both scenarios. The form has a
button with a standard OnClick event handler associated with it. However I've
added a second public method to the form with the same signature (the same
parameters):

 public
 procedure btnTest2Click(Sender: TObject);

When the button is pressed, beside displaying a message it switches the event han-
dler to the second one, changing the future behavior of the click operation:

procedure TForm1.btnTestClick(Sender: TObject);
begin
 ShowMessage ('Test message');
 btnTest.OnClick := btnTest2Click;
end;

procedure TForm1.btnTest2Click(Sender: TObject);
begin
 ShowMessage ('Test message, again');
end;

Now the first time you press the button, the first (default) event handler is executed,
while any other time you get the second event handler to run.

note As you type the code to assign a method to an event, code completion will suggest the available
event name to you, and turn it into an actual function call with parentheses at the end. This is not
correct. You have to assign to the event the method itself, without calling it. Other wise the com-
piler will try to assign the result of the method call (which being a procedure, doesn't exist)
resulting in an error.

The second part of the project demonstrates a completely dynamic event associa-
tion. As you click on the surface of the form, a new button is created dynamically
with an event handler that shows the caption of the associated button (the Sender
object):

procedure TForm1.btnNewClick(Sender: TObject);
begin
 ShowMessage ('You selected ' + (Sender as TButton).Text);
end;

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Single);
var

Marco Cantù, Object Pascal Handbook

10: Properties and Events - 291

 AButton: TButton;
begin
 AButton := TButton.Create(Self);
 AButton.Parent := Self;
 AButton.SetBounds(X, Y, 100, 40);
 Inc (FCounter);
 AButton.Text := 'Button' + IntToStr (FCounter);
 AButton.OnClick := btnNewClick;
end;

With this code each of the dynamically created buttons will react to a click of the
mouse by showing a message that depends on the button, even if using a single
event handler, thanks to the use of the Sender parameter of the event. An example
of the output is visible in Figure 10.1.

Figure 10.1:
The message displayed
by dynamically created
buttons in the
DynamicEvents
application project

Marco Cantù, Object Pascal Handbook

292 - 10: Properties and Events

Events Are Properties

A very important concept is that events in Object Pascal are almost invariably
implemented as method pointer type properties. This means that to handle an event
of a component, you assign a method to the corresponding event property. In terms
of code, this means you can assign to an event handler a method of an object, using
code like the following that we have already seen in the previous section:

Button1.OnClick := ButtonClickHandler;

Again, the rule is that the method pointer type of the event must match the signa-
ture of the method you assign, or the compiler will issue an error. The system
defined several standard method pointer types for events, that are commonly used,
starting with the simple:

type
 TNotifyEvent = procedure (Sender: TObject) of object;

This is generally the type of the OnClick event handler, so this implies the method
above must be declared (within a class) as:

procedure ButtonClickHandler (Sender: TObject);

If this sounds a bit confusing, consider what happens in the development environ-
ment. You select a button, let's say Button1, double-click on it and on the OnClick
event listed in the Object Inspector of the development environment, and a new
empty method is added to the container module (likely a form):

procedure TForm1.Button1Click (Sender: TObject)
begin

end;

You fill in the methods's code, and voila, everything works. This is because the
assignment of the event handler method to the event happens behind the scenes
exactly in the same way all other properties you set at design time are applied to the
components.

From the description above you can understand there is no one-to-one correspon-
dence between an event and the method assigned to it. Quite the opposite. You can
have several events that share the same event handler, which explains the reason for
the frequently used Sender parameter, which indicates which of the objects trig-
gered the event. As an example, if you have the same OnClick event handler for two
buttons, the Sender value will contain a reference be the button object that was
clicked.

Marco Cantù, Object Pascal Handbook

10: Properties and Events - 293

note You can assign the same method to different events in code, as shown above, but also at design
time. When you select an event in the Object Inspector, you can press the arrow button on the
right of the event name to see a drop-down list of “compatible” methods—a list of methods having
the same method pointer type. This makes it is easy to select the same method for the same event
of different components. In some cases, you can also assign the same handler to different compat-
ible events of the same component.

Adding an Event to the TDate Class

As we’ve added some properties to the TDate class, we can now add an event. The
event is going to be very simple. It will be called OnChange, and it can be used to
warn the user of the component that the value of the date has changed. To define an
event, we simply define a property corresponding to it, and we add some data to
store the actual method pointer the event refers to. These are the new definitions
added to the class in the DateEvent application project:

type
 TDate = class
 private
 FOnChange: TNotifyEvent;
 ...
 protected
 procedure DoChange; dynamic;
 ...
 public
 property OnChange: TNotifyEvent
 read FOnChange write FOnChange;
 ...
 end;

The property definition is actually very simple. A developer using this class can
assign a new value to the property and, hence, to the FOnChange private field. The
field is generally unassigned when the program starts: event handlers are for users
of the component, not the component writer. A component writer needing some
behavior will add it to the component methods.

In other words, the TDate class simply accepts an event handler and calls the
method stored in the FOnChange field when the value of the date changes. Of course,
the call takes place only if the event property has been assigned.

The DoChange method (declared as a dynamic method as is traditional with event fir-
ing methods) makes the test and the method call:

procedure TDate.DoChange;
begin
 if Assigned (FOnChange) then
 FOnChange (Self);

Marco Cantù, Object Pascal Handbook

294 - 10: Properties and Events

end;

note As you might remember from Chapter 8, a dynamic method is similar to a virtual method, but
uses a different implementation that reduced the memory footprint to the expense of a slightly
slower call.

The DoChange method in turn is called every time one of the values changes, as in
the following code:

procedure TDate.SetValue (y, m, d: Integer);
begin
 fDate := EncodeDate (y, m, d);
 // fire the event
 DoChange;
end;

Now if we look at the program that uses this class, we can simplify its code consider-
ably. First, we add a new custom method to the form class:

type
 TDateForm = class(TForm)
 ...
 procedure DateChange(Sender: TObject);

The code of this method simply updates the label with the current value of the Text
property of the TDate object:

procedure TDateForm.DateChange;
begin
 LabelDate.Text := TheDay.Text;
end;

This event handler is then installed in the FormCreate method:

procedure TDateForm.FormCreate(Sender: TObject);
begin
 TheDay := TDate.Init (7, 4, 1995);
 LabelDate.Text := TheDay.Text;
 // assign the event handler for future changes
 TheDay.OnChange := DateChange;
end;

Well, this seems like a lot of work. Was I lying when I told you that the event han-
dler would save us some coding? No. Now, after we’ve added some code, we can
completely forget about updating the label when we change some of the data of the
object. Here, as an example, is the handler of the OnClick event of one of the but-
tons:

procedure TDateForm.BtnIncreaseClick(Sender: TObject);
begin
 TheDay.Increase;
end;

Marco Cantù, Object Pascal Handbook

10: Properties and Events - 295

The same simplified code is present in many other event handlers. Once we have
installed the event handler, we don’t have to remember to update the label continu-
ally. That eliminates a significant potential source of errors in the program. Also
note that we had to write some code at the beginning because this is not a compo-
nent installed in the development environment but simply a class. With a
component, you simply select the event handler in the Object Inspector and write a
single line of code to update the label. That’s all.

This brings us to the question, how difficult is it to write a new component in Object
Pascal? It’s actually so simple that I’m going to show you how to do it in the next
section.

note This is meant to be just a short introduction to the role of properties and events and to writing
components. A basic understanding of these features is important for every Object Pascal pro-
grammer. This book doesn't delve into the detail of writing custom components.

Creating a TDate Component

Now that we understand properties and events, the next step is to see what is a com-
ponent. We'll briefly explore this topic by turning our TDate class into a component.
First, we have to inherit our class from the TComponent class, instead of the default
TObject class. Here is the code:

type
 TDate = class (TComponent)
 ...
 public
 constructor Create (AOwner: TComponent); overload; override;
 constructor Create (y, m, d: Integer); reintroduce; overload;

As you can see, the second step was to add a new constructor to the class, overriding
the default constructor for components to provide a suitable initial value. Because
there is an overloaded version, we also need to use the reintroduce directive for it,
to avoid a warning message from the compiler. The code of the new constructor
simply sets the date to today’s date, after calling the base class constructor:

constructor TDate.Create (AOwner: TComponent);
var
 Y, D, M: Word;
begin
 inherited Create (AOwner);
 // today...
 fDate := Date;

Marco Cantù, Object Pascal Handbook

296 - 10: Properties and Events

Having done this, we need to add to the unit that defines our class (the Dates unit of
the DateComp application project) a Register procedure. (Make sure this identifier
start with an uppercase R, otherwise it won’t be recognized.) This is required in
order to add the component to the IDE. Simply declare the procedure, which
requires no parameters, in the interface portion of the unit, and then write this
code in the implementation section:

procedure Register;
begin
 RegisterComponents ('Sample', [TDate]);
end;

This code adds the new component to the Sample page of the Tools Palette, creating
the page if necessary.

The last step is to install the component. For this we need to create a package, which
is a special type of application project hosting components. All you have to do is:

· Select the File | New | Other menu of the IDE, opening the New Items dialog box

· Select “Package”

· Save the package with a name (possibly in the same folder with the unit with the
actual component code)

· In the newly created package project, in the Project Manager pane, right click on
the Contains node to add a new unit to the project and select the unit with the
TDate component class.

· Now in the Project Manager you can right click on the package node and not only
issue a Build command but also select the Install menu item, to install the com-
ponent in the development environment

· If you start with the code that comes with the book, all you have to do is the last
step of the sequence above: Open the DatePackage project from the DateCompo-
nent folder and compile and install it.

If you now create a new project and move to the Tools Palette, you should see the
new component under Sample. Simply start typing its name to search for it. This
will be shown using the default icon for components. At this point you can place the
component on a form and start manipulating its properties in the Object Inspector,
as you can see in Figure 10.2. You can also handle the OnChange event in a much
easier way than in the last example.

Marco Cantù, Object Pascal Handbook

10: Properties and Events - 297

Figure 10.2:
The properties of our
new TDate component
in the Object Inspector

Besides trying to build your own sample application using this component (some-
thing I really suggest you do), you can now open the DateComponent application
project, which is an updated version of the component we’ve built step-by-step over
the last few sections of this chapter. This is basically a simplified version of the
DateEvent application project, because now the event handler is directly available in
the Object Inspector.

note If you open the DateCompTest application project before compiling and installing the specific
component package (DatePackage application project), the IDE won’t recognize the component
as it opens the form and will give you an error message. You won’t be able to compile the program
or make it work properly until you install the new component.

Implementing Enumeration Support
in a Class

In Chapter 3 we have seen how you can use a for-in loop as an alternative to a clas-
sic for loop. In that section I described how you can use for-in loops for arrays,
strings, sets and some other system data types. It is possible to apply such a loop to
any class, as long as it defines enumeration support. While the most obvious exam-
ple will be classes that contain lists of elements, from a technical point of view this
feature is quite open ended.

There are two rules you have to follow to support enumerating the elements of a
class in Object Pascal: add a method call GetEnumerator that returns a class (the
actual enumerating class); define this enumerating class with a Next method and a
Current property, the first for navigating among elements and the second for

Marco Cantù, Object Pascal Handbook

298 - 10: Properties and Events

returning an actual element. Once this is done (and I'll show you how in an actual
example in a second) the compiler can resolve a for-in loop, in which the target is
our class and the individual elements must be of the same type of the Current prop-
erty of the enumerator.

Although it is not strictly necessary, it seems a good idea to implement the enumer-
ator support class as a nested type (a language feature covered in Chapter 7)
because it really makes no sense to use the specific type used for the enumeration by
itself.

The following class, part of the NumbersEnumerator application project, stores a
range of numbers (a kind of abstract collection) and allows iterating over them. This
is made possible by defining an enumerator, declared as nested type and returned
by the GetEnumerator function:

type
 TNumbersRange = class
 public

 type
 TNumbersRangeEnum = class
 private
 nPos: Integer;
 fRange: TNumbersRange;
 public
 constructor Create (aRange: TNumbersRange);
 function MoveNext: Boolean;
 function GetCurrent: Integer;
 property Current: Integer read GetCurrent;
 end;

 private
 FnStart: Integer;
 FnEnd: Integer;

 public
 function GetEnumerator: TNumbersRangeEnum;
 procedure set_nEnd(const Value: Integer);
 procedure set_nStart(const Value: Integer);

 property nStart: Integer
 read FnStart write set_nStart;
 property nEnd: Integer
 read FnEnd write set_nEnd;
 end;

The GetEnumerator method creates an object of the nested type that stores status
information for iterating over the data.

Marco Cantù, Object Pascal Handbook

10: Properties and Events - 299

Notice how the enumerator constructor keeps a reference to the actual object it is
enumerating (object that is passed as parameter using self) and sets the initial
position to the very beginning:

function TNumbersRange.GetEnumerator: TNumbersRangeEnum;
begin
 Result := TNumbersRangeEnum.Create (self);
end;

constructor TNumbersRange.TNumbersRangeEnum.
 Create(aRange: TNumbersRange);
begin
 inherited Create;
 fRange := aRange;
 nPos := fRange.nStart - 1;
end;

note Why does the constructor set the initial value to the first value minus 1, rather than the first value,
as expected? It turns out the compiler generated code for the for in loop corresponds to creating
the enumeration and executing the code while Next do use Current. The test is performed before
getting the first value, as the list may have no value. This implies that Next is called before the
first element is used. Rather than implementing this with more complex logic, I've simply set the
initial value to one before the first so the first time Next is called the enumerator is positioned on
the first value.

Finally, the enumerator methods provide access to the data and a way to move to
the next value in the list (or the next element within the range):

function TNumbersRange.TNumbersRangeEnum.
 GetCurrent: Integer;
begin
 Result := nPos;
end;

function TNumbersRange.TNumbersRangeEnum.
 MoveNext: Boolean;
begin
 Inc (nPos);
 Result := nPos <= fRange.nEnd;
end;

As you can see in the code above the Next method serves two different purposes,
moving to the following element of the list and checking if the enumerator has
reached the end, in which case the method returns false.

After all this work, you can now use the for..in loop to iterate through the values of
the range object:

var
 aRange: TNumbersRange;
 I: Integer;
begin

Marco Cantù, Object Pascal Handbook

300 - 10: Properties and Events

 aRange := TNumbersRange.Create;
 aRange.nStart := 10;
 aRange.nEnd := 23;

 for I in aRange do
 Show (IntToStr (I));

The output is simply the list of values enumerated between 10 and 23 inclusive:

10
11
12
13
14
15
16
17
18
19
20
21
22
23

15 Tips About Mixing RAD and OOP

In this chapter I covered properties, events, and the published keyword, that make
up the core language features related to rapid application development (RAD) or
visual development or event-driven programming (three terms that refer to the
same conceptual model). While this is a very powerful model, it is backed by a solid
OOP architecture. At times, the RAD approach could push developers to forget
about good OOP practices. At the same time, going back to writing pure code, ignor-
ing the RAD approach can often be counterproductive. In this last section of the
chapter I've listed a few tips and suggestion about bridging the two approaches.
Another way to describe it is to consider it a section on “the OOP beyond RAD”.

note The material in this final section of the chapter was originally published in the issue 17 of “The
Delphi Magazine” (July 1999) with the title “20 Rules for OOP in Delphi”. Now I trimmed a few of
the rules and reworded others, but the essence remains.

Marco Cantù, Object Pascal Handbook

10: Properties and Events - 301

Tip 1: A Form is a Class

Programmers often treat forms as objects, while in fact they are classes. The differ-
ence is that you can have multiple form objects based on the same form class.

The confusing thing is that the IDE creates a default global variable and (depending
on your settings) can also create a form object at startup for every form class you
define in your project. This is certainly handy for newcomers, but is generally a bad
habit for any non-trivial application.

Of course, it is very important to give a meaningful name to each form (and its
class) and each unit. Unluckily the two names must be different, but you can use a
convention to map the two in a consistent way (such as AboutForm and About.pas).

As you'll progress through the following steps you'll see the practical effects of this
“a form is a class” concept.

Tip 2: Name Components

It’s important to use descriptive names for components, too. The most common
notation is to use a few lower case initial letters for the class type, followed by the
role of the component, as in btnAdd or editName. There are actually many similar
notations following this style and there is really no reason to say any one of them is
best, it’s up to your personal taste.

Tip 3: Name Events

It is equally important to give proper names to event handling methods. If you
name the components properly, the default name of Button1Click, for example,
becomes btnAddClick. Although we can guess what the method does from the but-
ton name, I think it is way better to use a name describing the effect of the method,
not when the method is triggered. For example, the OnClick event of the btnAdd
button could be named AddToList if this is what the method does.

This makes the code more readable, particularly when you call the event handler
from another method of the class, and helps developers attach the same method to
multiple events or to different components, although I have to say that using
Actions is the preferred choice for attaching a single event to multiple user interface
elements in any non-trivial programs.

Marco Cantù, Object Pascal Handbook

302 - 10: Properties and Events

note Actions and the ActionList component are a very nice architectural features of both VCL and Fire-
Monkey UI libraries, offering a conceptual separation of user operations (and their status) from
the user interface controls they are associated with. Activating the control, executes the action.
But if you logically disable the action, the UI elements gets also disabled. This topic is beyond the
scope of this book, but worth investigating if you use any of those frameworks. A good starting
point is this (rather old) article by Ray Konopka at http://edn.embarcadero.com/article/27058.

Tip 4: Use Form Methods

If forms are classes their code is collected in methods. Besides the event handlers,
which play a special role but can still be called as other methods, it is often useful to
add custom methods to form classes. You can add methods performing actions and
accessing to the status of the form. It is much better to add a public method to a
form than to let other forms operate on its components directly.

Tip 5: Add Form Constructors

A secondary form created at runtime can provide other specific constructors beside
the default one (inherited form the TComponent class). My suggestion is to overload
the Create method, adding the required initialization parameters, as in the follow-
ing code snippet:

public
 constructor Create (Text: string); reintroduce; overload;

constructor TFormDialog.Create(Text: string);
begin
 inherited Create (Application);
 Edit1.Text := Text;
end;

Tip 6: Avoid Global Variables

Global variables (that is, variables declared in the interface portion of a unit) should
be avoided. Here are a few suggestions to help you do this. If you need extra data
storage for a form, add some private fields to it. In this case each form instance will
have its own copy of the data.

Marco Cantù, Object Pascal Handbook

10: Properties and Events - 303

You might use unit variables (declared in the implementation portion of the unit)￼
for data shared among multiple instances of the form class, but it is much better to
use class data (explained in Chapter 12).

Tip 7: Never Use Form1 In TForm1 Methods

You should never refer to a specific object in a method of the class of that object. In
other words, never refer to Form1 in a method of the TForm1 class. If you need to
refer to the current object, use the self keyword. Keep in mind that most of the
time this is not needed, as you can refer directly to methods and data of the current
object. If you don’t follow this rule, you’ll get into real trouble when you create mul-
tiple instances of the form.

Tip 8: Seldom Use Form1 In Other Forms

Even in the code of other forms, try to avoid direct references to global objects, such
as Form1. It is much better to declare local variables or private fields to refer to other
forms. For example, the main form of a program can have a private field referring to
a dialog box. Obviously this rule becomes essential if you plan creating multiple
instances of the secondary form. You can keep a list in a dynamic array of the main
form, or simply use the Forms array of the global Screen object to refer to any form
currently existing in the application.

Tip 9: Remove the Global Form1 Variable

Actually, my suggestion is to remove the global form object which is automatically
added by the IDE to the project as you add a new form to it, like Form1. This is possi-
ble only if you disable the automatic creation of that form, something which I
suggest you should get rid of anyway. Alternatively, you can delete the correspond-
ing line used to create the form from the project source code.

I think that removing the global form object is very useful for Object Pascal new-
comers, who then won’t get confused between the class and the global object
anymore. In fact, after the global object has been removed, any reference to it will
result in an error.

Marco Cantù, Object Pascal Handbook

304 - 10: Properties and Events

Tip 10: Add Form Properties

As I’ve already discussed in the section “Adding Properties to Forms” in this chap-
ter, when you need data for a form, add a private field. If you need to access this
data from other classes, then add properties to the form. With this approach you
will be able to change the code of the form and its data (including its user interface)
without having to change the code of other forms or classes. You should also use
properties or methods to initialize a secondary form or dialog box, and to read its
final state. The initialization can also be performed using a constructor, as I have
already described.

Tip 11: Expose Components Properties

When you need to access the status of another form, you should not refer directly to
its components. This would bind the code of other forms or classes to the user inter-
face, which is one of the portions of an application subject to most changes. Rather,
declare a form property mapped to the component property: this is accomplished
with a Get method that reads the component status and a Set method that writes it.
Suppose you now change the user interface, replacing the component with another
one. All you have to do is fix the Get and Set methods related with the property, you
won’t have to check and modify the source code of all the forms and classes which
might refer to that component.

Tip 12: Use Array Properties When Needed

If you need to handle a series of values in a form, you can declare an array property.
In case this is an important information for the form you can make it also the
default array property of the form, so that you can directly access its value by writ-
ing SpecialForm[3]. This was already covered for a more generic case than forms in
the section “Using Indexed Properties”.

Tip 13: Use Side-Effects In Properties

Remember that one of the advantages of using properties instead of accessing global
data is that you can cause side-effects when writing (or reading) the value of a prop-
erty. For example, you can draw directly on the form surface, set the values of

Marco Cantù, Object Pascal Handbook

10: Properties and Events - 305

multiple properties, call special methods, change the status of multiple components
at once, or fire an event, if available.

Another related example is to use property getters to implement delayed creation.
Rather than creating a sub-object in the class constructor, you can create it the first
time it is needed, writing code like:

private
 FBitmap: TBitmap;
public
 property Bitmap: TBitmap read GetBitmap;

function TBitmap.GetBitmap: TBitmap;
begin
 if not Assigned (FBitmap) then
 FBitmap := ... // create it and initialize it
 Result := FBitmap;
end;

Tip 14: Hide Components

Too often I hear OOP purists complaining because forms include the list of the com-
ponents in the published section, an approach that doesn’t conform to the principle
of encapsulation. They are actually pointing out an important issue, but most of
them seem to be unaware that the solution is at hand without rewriting the libraries
or changing the language. The component references which are added to a form can
be moved to the private portion, so that they won’t be accessible by other forms.
This way you can make compulsory the use of properties mapped to the components
(see the section above) to access their status.

If the IDE places all the components in the published section, this is because of the
way these fields are bound to the components created from the streaming file (DFM
or FMX). When you set a component’s name the VCL automatically attaches the
component object to its reference in the form. This is possible only if the reference
is published, because the streaming system uses the traditional RTTI and some TOb-
ject methods to perform the operation.

So what happens is that by moving the component references from the published to
the private section you lose this automatic behavior. To fix the problem, simply
make it manual, by adding the following code for each component in the OnCreate
event handler of the form:

 Edit1 := FindComponent('Edit1') as TEdit;

The second operation you have to do is register the component classes in the sys-
tem, so that their RTTI information is included in the compiled program and made

Marco Cantù, Object Pascal Handbook

306 - 10: Properties and Events

avail- able to the system. This is needed only once for every component class, and
only if you move all the component references of this type to the private section. You
can add this call even if it is not required, as an extra call to the RegisterClasses
method is harmless. The RegisterClasses call is usually added to the initialization
section of the unit hosting the form:

RegisterClasses([TEdit]);

Tip 15: Use an OOP Form Wizard

Repeating the two operations above for every component of every form is certainly
boring and time consuming. To avoid this excessive burden, I’ve written a simple
wizard which generates the lines of code to add to the program in a small window.
You’ll need to do a simple copy and paste operations for each form, as the wizard
doesn’t automatically place the source code in the initialization section of the unit.

How to get the wizard? You can find it as part of the “Cantools Wizards” at:

http://www.marcocantu.com/cantools

Tips Conclusion (and Further Readings)

This is only a small collection of tips and suggestions for a more balanced RAD and
OOP development model. Of course there is much more to this topic, which goes
well beyond the focus of this book, which is primarily on the language itself, not the
best practices for application architectures.

For more information you can check my blog and several other Delphi sources, but
a particular mention goes to the recent books by Nick Hodges, including “Coding in
Delphi” that you can find at:

http://www.codingindelphi.com/

Marco Cantù, Object Pascal Handbook

11: Interfaces - 307

11: interfaces

Contrary to what happens in C++ and a few other languages, the Object Pascal
inheritance model doesn’t support multiple inheritance. This means that each class
can have only a single base class. The usefulness of multiple inheritance is a topic of
heated debate. The absence of this construct in Object Pascal can be considered
both a disadvantage (because you lose some of the power of C++) and an advantage
(because you get a simpler language and fewer problems).

note Most of today's object-oriented programming languages do not support multiple inheritance, but
use interfaces, including Java and C#. Multiple inheritance support remains mostly confined to
the C++ language. Some dynamic object-oriented languages support mixins, a different, some-
what simpler, way to achieve something similar to multiple inheritance.

Interfaces provide the flexibility and power of declaring support for multiple inter-
faces implemented on a class, while avoiding the problems of inheriting multiple
implementations. Rather than get bogged down in this debate, I’ll simply assume
that it is useful to treat a single object from multiple “perspectives”, to consider it as
an object of different base classes. But before I build an example following this prin-
ciple, we have to introduce the role of interfaces in Object Pascal and figure out how
they work.

From a more general point of view, interfaces support a slightly different object-ori-
ented programming model than classes. Objects implementing interfaces are
subject to polymorphism for each of the interfaces they support. Indeed, the inter-

Marco Cantù, Object Pascal Handbook

308 - 11: Interfaces

face-based model is powerful. But having said that, I’m not interested in trying to
assess which approach is better in each case. Certainly, interfaces favor encapsula-
tion and provide a looser connection between classes than inheritance.

note The techniques covered in this chapter and the overall support for interfaces were originally
added to Object Pascal as a way to support and implement Window COM architecture. Later on
the feature was extended to be fully usable outside of that scenario, but some of the COM ele-
ments like interface identity via an ID and reference counting support still remain in the current
Object Pascal implementation of interfaces, making them slightly different from other languages.

Using Interfaces

Beside declaring abstract classes (classes with abstract methods), in Object Pascal
you can also write a purely abstract class; that is, a sort of class with only virtual
abstract methods. This is accomplished using a specific keyword, interface. For
this reason we refer to these data types as interfaces. Technically, in fact, an inter-
face is not a class, although it may resemble one. While a class can have an instance,
an interface cannot. An interface can be implemented by one or more classes, so
that instances of those classes end up supporting or implementing the interface.

Interfaces have a few distinctive features:

· Interface type variables are reference counted, unlike class type variables

· A class can inherit from a single ancestor class, but it can implement multiple
interfaces

· Just as all classes inherit from TObject, all interfaces descend from IInterface,
forming a separate, orthogonal hierarchy

· By convention interface names start with the letter I, rather than the letter T
used by most other data types.

note Originally the base interface type in Object Pascal was called IUnknown, as this is what COM
requires. More recently the IUnknown interface has been renamed IInterface, to underline the
fact you can use interface in Object Pascal even outside of the COM realm and on operating sys-
tems where COM doesn’t exist. Anyway, the actual behavior of IInterface is still identical to the
previous one of IUnknown. You can use interfaces to implement abstraction layers within your
applications, without building COM server objects.

Marco Cantù, Object Pascal Handbook

11: Interfaces - 309

Declaring an Interface

Those are the core concepts, let's move to some actual demos, that should help you
understand how interfaces work in Object Pascal. In practical terms, an interface
has a definition that resembles a class definition. This definition has a list of meth-
ods, but those methods are not implemented in any way, exactly as happens for an
abstract method in a regular class.

The following is the definition of an interface:

type
 ICanFly = interface
 function Fly: string;
 end;

Given each interface directly or indirectly inherits from the base interface type, this
corresponds to writing:

type
 ICanFly = interface (IInterface)
 function Fly: string;
 end;

In a little while I'll show you what's the implication of inheriting from IInterface
and what it brings to the table. For the moment, suffice to say that IInterface has a
few base methods (again, not unlike TObject).

There is one last tidbit related to interface declarations. For interfaces, part of the
type checking is done dynamically, and the system requires each interface to have a
unique identifier, or GUID, that you can obtain in the editor by pressing
Ctrl+Shift+G. This is the complete code of the interface:

type
 ICanFly = interface
 ['{D7233EF2-B2DA-444A-9B49-09657417ADB7}']
 function Fly: string;
 end;

This interface and its coming implementation are available in the Intf101 applica-
tion project.

note Although you can compile and use an interface without specifying a GUID, you'll generally want
to generate the GUID because it is required to perform interface querying or dynamic as type-
casts using that interface type. The whole point of interfaces is to take advantage of greatly
extended type flexibly at run time, which depends on interfaces have a GUID. The only scenario in
which the compiler will synthesize an interface ID on your behalf is for interfaces it builds from
generic interfaces, a topic we won't get to until Chapter 14.

Marco Cantù, Object Pascal Handbook

310 - 11: Interfaces

Implementing the Interface

Any class can implement one interface (or more than one), listing it (or all of them)
after the base class it inherits from, and providing runnable code for each of the
methods:

type
 TAirplane = class (..., ICanFly)
 function Fly: string;
 end;

function TAirplane.Fly: string;
begin
 // actual code
end;

When a class implements an interface it must provide an implementation of all of
the interface methods (and with the same signature), so in this case the TAirplane
class must implement the Fly method as a function returning a string. Given the
interface also inherits from a base interface, a class implementing an interface must
invariably provide all of the methods of the interface and of its base interface.

This is why it is quite common to implement interfaces in classes that inherit from a
base class that already implements the methods of the IInterface base interface.
The Object Pascal runtime library already provides a few base classes to implement
the basic behavior. The simplest one is the TInterfacedObject class, so the code
above could become:

type
 TAirplane = class (TInterfacedObject, ICanFly)
 function Fly: string;
 end;

note When you implement an interface you can use either a static of a virtual method. If you plan over-
riding the methods in inherited class, using virtual methods makes sense. There is an alternative
approach, though, which is to specify that the base class also inherits from the same interface, and
override the method. I tend to prefer declaring the method that implement interface methods as
virtual methods when needed.

Now that we have defined an interface and a class implementing it, we can create an
object of this class. We can treat this as a regular class, by writing:

var
 Airplane1: TAirplane;
begin
 Airplane1 := TAirplane.Create;
 try
 Airplane1.Fly;
 finally

Marco Cantù, Object Pascal Handbook

11: Interfaces - 311

 Airplane1.Free;
 end;
end;

However, we can also declare a variable of the interface type, which automatically
enables the reference memory model:

var
 Flyer1: ICanFly;
begin
 Flyer1 := TAirplane.Create;
 Flyer1.Fly;
end;

There are a few relevant considerations about the first line of this apparently simple
code snippet, also part of the Intf101 application project.

First, as soon as you assign an object to an interface variable, the runtime automati-
cally checks to see whether the object implements that interface, using a special
version of the as operator. You can explicitly express this operation as follows:

Flyer1 := TAirplane.Create as ICanFly;

Second, whether we use the direct assignment or the as statement, the runtime does
one extra thing: it calls the _AddRef method of the object, increasing its reference
count. This is done by calling the method our object implements from TInterface-
dObject.

At the same time, as soon as the Flyer1 variable goes out of scope (that is, when
executing the end statement), the runtime calls the _Release method, which
decreases the reference count, checks whether the reference count is zero, and if
necessary, destroys the object. For this reason in the listing above, there is no need
to free the object we’ve created in code.

note As a side effect of the lack of the Free call, the code has also no for a try-finally block. However, as
the compiler will add an implicit call to _Release (and possibly Free) it will also automatically
decorate the method with an implicit try-finally block. This takes places in many cases in Object
Pascal: basically every time a method has one or more managed types (like strings, interface, or
dynamic arrays) there is an automatic and implicit try-finally block added by the compiler.

Interfaces and Reference Counting

As we have seen in the code above, Object Pascal objects referenced by interface
variables are reference-counted. We have also seen that they can be automatically
de-allocated when no interface variable refers to them any longer. Now what is
important to acknowledge is that while there is some compiler magic involved (the

Marco Cantù, Object Pascal Handbook

312 - 11: Interfaces

hidden _AddRef and _Release calls) the actual reference counting mechanism is
subject to a specific implementation. In the last example, reference counting is
indeed in action, because of the code in the methods of the TInterfacedObject class
(here listed in a slightly simplified version):

function TInterfacedObject._AddRef: Integer;
begin
 Result := AtomicIncrement(FRefCount);
end;

function TInterfacedObject._Release: Integer;
begin
 Result := AtomicDecrement(FRefCount);
 if Result = 0 then
 begin
 Destroy;
 end;
end;

note The scenario is quite different on mobile platforms based on automatic reference counting (ARC),
because in that case the reference counting mechanism is available for both regular object refer-
ences and for interface based variables. In that scenario the mechanism is quite smooth and
system wide and cannot be disabled. More on ARC, including ARC and interfaces, in Chapter 13.
Also, starting with Delphi 10.1 Berlin, the behavior of interface references can be modified also on
desktop platforms, as explained in the section “Weak and Unsafe Interface References”.

Now consider a different base class that implements IInterface and that is also
found in the RTL (in the Generics.Defaults unit), TSingletonImplementation.
This oddly named class basically disables the actual reference counting mechanism:

function TSingletonImplementation._AddRef: Integer;
begin
 Result := -1;
end;

function TSingletonImplementation._Release: Integer;
begin
 Result := -1;
end;

note This class is a real misnomer as it has nothing to do with the singleton pattern. We'll see an exam-
ple of this pattern in the next chapter.

While TSingletonImplementation is not commonly used, there is another class that
implements interfaces and disables the reference counting mechanism, just because
it has its own memory management model, and that's the commonly-used TCompo-
nent class. If you want to have a custom component that implements an interface,
you don't have to worry about reference counting and memory management. We'll

Marco Cantù, Object Pascal Handbook

11: Interfaces - 313

see an example of a custom component implementing an interface in the section
“Implementing Patterns with Interfaces” at the end of this chapter.

Errors in Mixing References

When using objects, you should generally access them either only with object vari-
ables or only with interface variables. Mixing the two approaches breaks the
reference counting scheme provided by Object Pascal and can cause memory errors
that are extremely difficult to track. In practice, if you’ve decided to use interfaces,
you should probably use exclusively interface-based variables.

Here is one example out of many possible similar cases. Suppose you have an inter-
face, a class implementing it, and a global procedure taking the interface as
parameter:

type
 IMyInterface = interface
 ['{F7BEADFD-ED10-4048-BB0C-5B232CF3F272}']
 procedure Show;
 end;

 TMyIntfObject = class (TInterfacedObject, IMyInterface)
 public
 procedure Show;
 end;

procedure ShowThat (anIntf: IMyInterface);
begin
 anIntf.Show;
end;

The code looks fairly trivial and it is 100 percent correct. What might be wrong is
the way you call the procedure (this code is part of the IntfError application
project):

procedure TForm1.btnMixClick(Sender: TObject);
var
 anObj: TMyIntfObject;
begin
 anObj := TMyIntfObject.Create;
 try
 ShowThat (anObj);
 finally
 anObj.Free;
 end;
end;

What happens in this code is I'm passing a plain object to a function expecting an
interface. Given the object does support the interface the compiler has no problem

Marco Cantù, Object Pascal Handbook

314 - 11: Interfaces

making the call. The issue is in the way memory is managed. Initially, the object has
a reference count of zero, as there is no interface referring to it. On entering the
ShowThat procedure, the reference count is increased to 1. That's OK, and the call
takes place. Now upon exiting the procedure the reference count is decreased and
goes to zero, so the object is destroyed. In other words, the anObj will be destroyed
as you pass it to a procedure, which is indeed quite awkward. If you run this code, it
will fail with a memory error (unless you are running it on a mobile device and
hence using ARC, in which case it will work smoothy).

There could be multiple solutions. You could artificially increment the reference
count and use other low level tricks. But the real solution is to not mix interfaces
and object references and go for using only interfaces to refer to an object (this code
is taken again from the IntfError application project):

procedure TForm1.btnIntfOnlyClick(Sender: TObject);
var
 anObj: IMyInterface;
begin
 anObj := TMyIntfObject.Create;
 ShowThat (anObj);
end;

In this specific case the solution is at hand, but in many other circumstances it is very
hard to come up with the correct code. Again, the rule of the thumb is to avoid mixing
references of different types… but keep also reading the next section for some recent
alternative approaches.

Weak And Unsafe Interface References

Starting with Delphi 10.1 Berlin, the Object Pascal language offers a new model for
managing references to interfaces on all platforms, including Win32 and Win64. As
we'll see in more details in Chapter 13, the mobile compilers implement ARC mem-
ory management.

One of the side features of ARC is the ability to define weak references to interfaces,
or references that don't increase the decrease the reference count. Weak references
are managed, so while the reference count is not increased, when the actual object
goes out of scope the weak reference is set back to nil. Another, related feature is the
ability to disable the reference mechanism altogether using an unsafe reference –
something not much different from a basic pointer.

In the common scenarios in which reference count is active, you can have code like
the following, which relies on reference counting to dispose the temporary object:

procedure TForm3.Button2Click(Sender: TObject);

Marco Cantù, Object Pascal Handbook

11: Interfaces - 315

var
 one: ISimpleInterface;
begin
 one := TObjectOne.Create;
 one.DoSomething;
end;

What if the object has a standard reference count implementation and you want to
create an interface reference that is kept out of the total count of references? You
can now achieve this by adding the [unsafe] attribute to the interface variable dec-
laration, changing the code above to:

procedure TForm3.Button2Click(Sender: TObject);
var
 [unsafe] one: ISimpleInterface;
begin
 one := TObjectOne.Create;
 one.DoSomething;
end;

Not that this is a good idea, as the code above would cause a memory leak. By dis-
abling the reference counting, when the variable goes out of scope nothing happens.
There are some scenarios in which this is beneficial, as you can still use interfaces
and not trigger the extra reference. In other words, an unsafe reference is treated
just like... a pointer, with no extra compiler support.

Now before you consider using the unsafe attribute for having a reference without
increasing the count, consider that in most cases there is another better option, that
is the use of weak references. Weak references also avoid increasing the reference
count, but they are managed. This means that the system keeps track of weak refer-
ences, and in case the actual object gets deleted, it will set the weak reference to nil.
With an unsafe reference, instead, you have no way to know the status of the target
object (a scenario called dangling reference).

In which scenarios are weak reference useful? A classic case is that of two object
with cross-references. In such a case, in fact, the object would artificially inflate the
reference count of the other objects, and they'll basically remain in memory forever
(with reference count set to 1), even when they become unreachable.

As an example consider the following interface, accepting a reference to another
interface of the same time, and a class implementing it with an internal reference:

type
 ISimpleInterface = interface
 procedure DoSomething;
 procedure AddObjectRef (simple: ISimpleInterface);
 end;

 TObjectOne = class (TInterfacedObject, ISimpleInterface)
 private

Marco Cantù, Object Pascal Handbook

316 - 11: Interfaces

 anotherObj: ISimpleInterface;
 public
 procedure DoSomething;
 procedure AddObjectRef (simple: ISimpleInterface);
 end;

If you create two objects and cross-reference them, you end up with a memory leak:

var
 one, two: ISimpleInterface;
begin
 one := TObjectOne.Create;
 two := TObjectOne.Create;
 one.AddObjectRef (two);
 two.AddObjectRef (one);

Now the solution available in Delphi 10.1 Berlin is to mark the private field anoth-
erObj as weak:

private
 [weak] anotherObj: ISimpleInterface;

Now the reference count is not modified when you pass the object as parameter to
the AddObjectRef call, it stays at 1, and it goes back to zero when the variables go
out of scope, freeing the objects from memory.

Now there are many other cases in which this feature becomes handy, and there is
some real complexity in the underlying implementation. It is great feature, but one
that takes some effort to fully master. Also, it does have some run-time cost, as weak
references are managed (while unsafe ones are not).

note You can find more information on weak references in Chapter 13, which covers memory manage-
ment in general and particularly ARC on mobile platforms. You can refer to figures 13.2 and 13.3
for a graphical representation of a simple reference loop among two objects with or without weak
references.

Advanced Interface Techniques

To further delve into the capabilities of interfaces, before we look into real world
usage scenarios, it is important to cover some of their more advanced technical fea-
tures, such as how to implement multiple interfaces or how to implement an
interface method with a method having a different name (in case of a name con-
flict). Another important feature interfaces have are properties. To demonstrate all
of these more advanced features related with interfaces, I’ve written the IntfDemo
application project.

Marco Cantù, Object Pascal Handbook

11: Interfaces - 317

Interface Properties

The code in this section is based on two different interfaces, IWalker and IJumper,
both of which define a few methods and a property. An interface property is just a
name mapped to a read and a write method. Unlike a class, you cannot map an
interface property to a field, simply because an interface cannot have a field.

These are the actual interface definitions:

IWalker = interface
 ['{0876F200-AAD3-11D2-8551-CCA30C584521}']
 function Walk: string;
 function Run: string;
 procedure SetPos (Value: Integer);
 function GetPos: Integer;

 property Position: Integer
 read GetPos write SetPos;
end;

IJumper = interface
 ['{0876F201-AAD3-11D2-8551-CCA30C584521}']
 function Jump: string;
 function Walk: string;
 procedure SetPos (Value: Integer);
 function GetPos: Integer;

 property Position: Integer
 read GetPos write SetPos;
end;

When you implement an interface with a property, all you have to implement is the
actual access methods, as the property is transparent and not available in the class
itself:

TRunner = class (TInterfacedObject, IWalker)
private
 FPos: Integer;
public
 function Walk: string;
 function Run: string;
 procedure SetPos (Value: Integer);
 function GetPos: Integer;
end;

The implementation code is trivial (you can find it in the IntfDemo application
project), with methods computing the new position and displaying what's being exe-
cuted:

function TRunner.Run: string;
begin
 Inc (FPos, 2);

Marco Cantù, Object Pascal Handbook

318 - 11: Interfaces

 Result := FPos.ToString + ': Run';
end;

The demo code using the IWalker interface and its TRunner implementation is this:

procedure TForm1.Button1Click(Sender: TObject);
var
 Intf: IWalker;
begin
 Intf := TRunner.Create;
 Intf.Position := 0;
 Show (Intf.Walk);
 Show (Intf.Run);
 Show (Intf.Run);
end;

The output should not be surprising:

1: Walk
3: Run
5: Run

Interface Delegation

In a similar way, I can define a simple class implementing the IJumper interface:

TJumperImpl = class (TAggregatedObject, IJumper)
private
 FPos: Integer;
public
 function Jump: string;
 function Walk: string;
 procedure SetPos (Value: Integer);
 function GetPos: Integer;
end;

This implementation is different from the previous one for the use of a specific base
class, TAggregatedObject. This is a special purpose class for the definition of the
objects used internally to support an interface, with the syntax I'm going to show in
a moment.

note The TAggregatedObject class is another implementation of IInterface defined in the System
unit. Compared to TInterfacedObject it has differences in the implementation of reference
counting (basically delegating all reference counting to the container or controller) and in the
implementation of interface querying, in case the container supports multiple interfaces.

I’m going to use it in a different way. In the following class, TMyJumper, I don’t want
to repeat the implementation of the IJumper interface with similar methods.
Instead, I want to delegate the implementation of that interface to a class already

Marco Cantù, Object Pascal Handbook

11: Interfaces - 319

implementing it. This cannot be done through inheritance (we cannot have two base
classes); instead, you can use specific features of the language - interface delegation.
The following class implements an interface by referring to an implementation
object with a property, rather than implementing the actual methods of the inter-
face:

TMyJumper = class (TInterfacedObject, IJumper)
private
 FJumpImpl: TJumperImpl;
public
 constructor Create;
 destructor Destroy; override;
 property Jumper: TJumperImpl
 read FJumpImpl implements IJumper;
end;

This declaration indicates that the IJumper interface is implemented for the
TMyJumper class by the FJumpImpl field. This field, of course, must actually imple-
ment all the methods of the interface. To make this work, you need to create a
proper object for the field when a TMyJumper object is created (the constructor
parameter is required by the base TAggregatedObject class):

constructor TMyJumper.Create;
begin
 fJumpImpl := TJumperImpl.Create (self);
end;

The class has also a destructor for freeing the internal object, which is referenced
with a regular field and not an interface (as reference counting won't work in this
scenario).

This example is simple, but in general, things get more complex as you start to mod-
ify some of the methods or add other methods that still operate on the data of the
internal fJumpImpl object. The overall concept here is that you can reuse the imple-
mentation of an interface in multiple classes.

The code that uses this interface implemented indirectly is identical to the standard
code one would write:

procedure TForm1.Button2Click(Sender: TObject);
var
 Intf: IJumper;
begin
 Intf := TMyJumper.Create;
 Intf.Position := 0;
 Show (Intf.Walk);
 Show (Intf.Jump);
 Show (Intf.Walk);
end;

Marco Cantù, Object Pascal Handbook

320 - 11: Interfaces

Multiple Interfaces and Methods Aliases

Another very important features of interfaces is the ability, for a class, to implement
more than one. This is demonstrated by the following the TAthlete class, which
implements both the IWalker and IJumper interfaces:

TAthlete = class (TInterfacedObject, IWalker, IJumper)
private
 FJumpImpl: TJumperImpl;
public
 constructor Create;
 destructor Destroy; override;
 function Run: string; virtual;
 function Walk1: string; virtual;
 function IWalker.Walk = Walk1;
 procedure SetPos (Value: Integer);
 function GetPos: Integer;

 property Jumper: TJumperImpl
 read FJumpImpl implements IJumper;
end;

One of the interfaces is implemented directly, whereas the other is delegated to the
internal FJumpImpl object, exactly as I did in the previous example.

Now we have an issue. Both the interfaces we want to implement have a Walk
method, with the same parameters signature, so how to we implement both of them
in our class? How does the language support a method name clash, in case of multi-
ple interfaces? The solution is to rename one of the methods, with the statement

function IWalker.Walk = Walk1;

This declaration indicates that the class implements the Walk method of the IWalker
interface with a method called Walk1 (instead of with a method having the same
name). Finally, in the implementation of all of the methods of this class, we need to
refer to the Position property of the FJumpImpl internal object.

By declaring a new implementation for the Position property, we’ll end up with two
positions for a single athlete, a rather odd situation. Here are a couple of examples:

function TAthlete.GetPos: Integer;
begin
 Result := FJumpImpl.Position;
end;

function TAthlete.Run:string;
begin
 fJumpImpl.Position := FJumpImpl.Position + 2;
 Result := IntToStr (FJumpImpl.Position) + ': Run';
end;

Marco Cantù, Object Pascal Handbook

11: Interfaces - 321

How can we create an interface to this TAthlete object and refer to both operations
in the IWalker and IJumper interfaces? Well, we cannot do that exactly, because
there isn't a base interface we can use. Interfaces allow for a more dynamic type
checking and type casting, though, so what we can do it convert an interface to a dif-
ferent one, as long as the object we are referring to supports both interfaces,
something the compiler will be able to find out only at runtime. This is the code for
that scenario:

procedure TForm1.Button3Click(Sender: TObject);
var
 Intf: IWalker;
begin
 Intf := TAthlete.Create;
 Intf.Position := 0;
 Show (Intf.Walk);
 Show (Intf.Run);
 Show ((Intf as IJumper).Jump);
end;

Of course, we could have picked either of the two interfaces, and converted that to
the other. Using an as cast is a way to do a runtime conversion, but there are more
options when you are dealing with interfaces, as we'll see in the next section.

Interface Polymorphism

In the previous section we have seen how you can define multiple interfaces and
have a class implement two of them. Of course, this could be extended to any num-
ber. You can also create a hierarchy of interfaces, as an interface can inherit from an
existing interface:

ITripleJumper = interface (IJumper)
 [‘{0876F202-AAD3-11D2-8551-CCA30C584521}’]
 function TripleJump: string;
end;

This new interface type has all of the methods (and properties) of its base interface
type and adds a new method. Of course, there are interface compatibility rules
much the same as classes.

What I want to focus on in this section, though, is a slightly different topic, which is
interface-based polymorphism. Given a general base class object, we can invoke a
virtual method and be sure the correct version will be called. The same can happen
for interfaces. With interfaces, however, we can go a step beyond and often have
dynamic code that queries for an interface. Given that the object to interface rela-
tionship can be quite complex (an object can implement multiple interfaces and

Marco Cantù, Object Pascal Handbook

322 - 11: Interfaces

indirectly implement also their base interfaces) it is important to have a better pic-
ture of what's possible in this scenario.

As a starting point, let's suppose we have a generic IInterface reference. How do
we know if it supports a specific interface? There are actually multiple techniques,
which are slightly different from their class counterparts:

· Use an is statement for testing (and possibly an as cast for the following conver-
sion). This can be used to check if an object supports an interface, but not if an
object referenced with an interface also supports another one (that is, you cannot
apply is to interfaces). Notice that in any case the as conversion is required: a
direct cast to an interface type will almost invariably result in an error.

· Call the global Support function, using one of its many overloaded versions. You
can pass to this function the object or the interface to test, the target interface
(using the GUID or the type name), and you can also pass an interface variable
where the actual interface will get stored, if the function is successful.

· Directly call the QueryInterface method of the IInterface base interface, which
is a little lower level, always requires an interface type variable as an extra result,
and uses a numeric HRESULT value rather than a Boolean result.

Here is a snippet taken from the same IntfDemo application project showing how
you can apply the last two techniques to a generic IInterface variable:

procedure TForm1.Button4Click(Sender: TObject);
var
 Intf: IInterface;
 WalkIntf: IWalker;
begin
 Intf := TAthlete.Create;
 if Supports (Intf, IWalker, WalkIntf) then
 Show (WalkIntf.Walk);

 if Intf.QueryInterface (IWalker, WalkIntf) = S_OK then
 Show (WalkIntf.Walk);
end;

I fully recommend using one of the overloaded versions of the Supports function,
compared to the QueryInterface call. Ultimately, Supports will call it but offers
simpler, higher level options.

Another case in which you'd want to use polymorphism with interfaces, is when you
have an array of interfaces of a higher level interface type (but also possibly an array
of objects, some of which might support the given interface).

Marco Cantù, Object Pascal Handbook

11: Interfaces - 323

Extracting Objects from Interface References

It was the case for many versions of Object Pascal, that when you had assigned an
object to an interface variable, there was no way to access the original object. At
times, developers would add a GetObject method to their interfaces to perform the
operation, but that was quite an odd design.

In today's language you can cast interface references back to the original object to
which they have been assigned. There are three separate operations you can use:

· You can write an is test to verify that an object of the given type can can indeed
be extracted from the interface reference:

intfVar is TMyObject

· You can write an as cast to perform the type cast, raising an exception in case of
an error:

intfVar as TMyObject.

· You can write a hard type cast to perform the same conversion, returning a nil
pointer in case of an error:

TMyObject(intfVar)

note In every case, the type cast operation works only if the interface was originally obtained from an
Object Pascal object, and not from a COM server. Also note that you can not only cast to the exact
class of the original object, but also to one of its base classes (following type compatibility rules).

As an example, consider having the following simple interface and implementation
class (part of the ObjFromIntf application project):

type
 ITestIntf = interface (IInterface)
 ['{2A77A244-DC85-46BE-B98E-A9392EF2A7A7}']
 procedure DoSomething;
 end;

 TTestImpl = class (TInterfacedObject, ITestIntf)
 public
 procedure DoSomething;
 procedure DoSomethingElse; // not in the interface
 destructor Destroy; override;
 end;

With these definitions you can now define an interface variable, assign an object to
it, and use it also to invoke the method not in the interface, with the new cast:

var
 intf: ITestIntf;
begin
 intf := TTestImpl.Create;

Marco Cantù, Object Pascal Handbook

324 - 11: Interfaces

 intf.DoSomething;
 (intf as TTestImpl).DoSomethingElse;

You can also write the code in the following way, using an is test and a direct cast,
and you can always cast to a base class of the actual class of the object:

var
 intf: ITestIntf;
 original: TObject;
begin
 intf := TTestImpl.Create;
 intf.DoSomething;
 if intf is TObject then
 original := TObject (intf);
 (original as TTestImpl).DoSomethingElse;

Considering that a direct cast returns nil if not successful, you could also write the
code as follows (without the previous is test):

 original := TObject (intf);
 if Assigned (original) then
 (original as TTestImpl).DoSomethingElse;

Notice that assigning the object extracted from the interface to a variable exposes
you to reference counting issues: when the interface is set to nil or goes out of
scope, the object is actually deleted and the variable referring to it will become
invalid. You'll find the code highlighting the problem in the btnRefCountIssueClick
event handler of the example.

Implementing An Adapter Pattern
with Interfaces

As a real world example of the use of interfaces, I've added to this chapter a section
covering the adapter pattern. In short, the adapter pattern is used to convert the
interface of one class into another one expected by the user of the class. This allows
you to use an existing class within a framework requiring a defined interface. The
pattern can be implemented by creating a new class hierarchy that does the map-
ping, or by extending existing classes so that they expose a new interface. This can
be done either by multiple inheritance (in the languages supporting it) or using
interfaces. In this last case, which is what I'm going to use here, a new inherited
class will implement the given interface and map to its method its existing behavior.

In the specific scenario, the adapter provides a common interface for querying val-
ues of multiple components, which happen to have inconsistent interfaces (as it

Marco Cantù, Object Pascal Handbook

11: Interfaces - 325

often happens in the UI libraries). This is the interface, called ITextAndValue
because it allows accessing the status of a component by getting either a textual
description or a numeric one:

type
 ITextAndValue = interface
 '[51018CF1-OD3C-488E-81B0-0470B09013EB]'
 procedure SetText(const Value: string);
 procedure SetValue(const Value: Integer);
 function GetText: string;
 function GetValue: Integer;

 property Text: string read GetText write SetText;
 property Value: Integer read GetValue write SetValue;
end;

The next step is to create a new subclass for each of the components we want to be
able to use with the interface. For example, we could write:

type
 TApadterLabel = class(TLabel, ITextAndValue)
 protected
 procedure SetText(const Value: string);
 procedure SetValue(const Value: Integer);
 function GetText: string;
 function GetValue: Integer;
 end;

The implementation of these four methods is quite simple, as they can be mapped
to the Text property performing a type conversion in case the value (or the text) is a
number. Now that you have a new component, however, you'll have to install it (as
we mentioned in the last chapter) and replace the existing components in your
forms with this new one. Repeating the same process for each of the components
you want to adapt would be very time consuming.

A much simpler alternative would be to use the interposer class idiom (that is,
define a class with the same name of the base class, but in a different unit). This will
be properly recognized by the compiler and by the runtime streaming system, so
that at runtime you'll end up with an object of the new specific class. The only differ-
ence is that at design time you'll see and interact with instances of the base
component class.

Marco Cantù, Object Pascal Handbook

326 - 11: Interfaces

note Interposer classes were first mentioned, and given this name, many years ago in The Delphi Maga-
zine. They certainly are a bit of a hack, but at times a handy one. I consider interposer classes, that
is classes with the same name of a base class but defined in a different unit, more of an Object Pas-
cal idiom. Notice that for this mechanism to work it is critical that the unit with the interposer
class is listed in the uses statement after the one with the regular class it should replace. In other
words, the symbols defined in the last units in the uses statement replace an identical symbol
define in previously included units. Of course, you can always discriminate the symbols by prefix-
ing them with the unit name, but this would really defeat the entire idea of this hack, which is
taking advantage of the global name resolution rules.

To define an interposer class, you'd generally write a new unit with a class having
the same name of an existing base class. To refer to the base class, you have to prefix
it with the uses name (or the compiler will think you are trying to make a recursive
definition):

type
 TLabel = class(StdCtrls.TLabel, ITextAndValue)
 protected
 procedure SetText(const Value: string);
 procedure SetValue(const Value: Integer);
 function GetText: string;
 function GetValue: Integer;
 end;

In this case you won't have to install components or touch the existing programs,
but only add an extra uses statement to them at the end of the list.In both cases (but
the demo application I wrote uses interposer classes), you can query the compo-
nents of the form for this adapter interface and, for example, write code to set all of
the values to 50, which in turn will affect different properties of different compo-
nents:

procedure TForm1.Button1Click(Sender: TObject);
var
 Intf: ITextAndValue;
 I: integer;
begin
 for I := 0 to ComponentCount - 1 do
 if Supports (Components [i], ITextAndValue, intf) then
 Intf.Value := 50;
end;

In the specific example, this code will affect the Value of a progress bar or a number
box, and the Text of a label or an edit. It will also totally ignore a couple of other
components for which I didn't define the adapter interface. While this is just a very
specific case, if you examine other design patterns you'd easily find out that quite a
few of them can be better implemented taking advantage of the extra flexibility
interfaces have over classes in Object Pascal (like in Java and C#, just to name
another couple of popular languages that make extensive use of interfaces).

Marco Cantù, Object Pascal Handbook

12: Manipulating Classes - 327

12: manipulating

classes

In the last few chapters you’ve seen the foundations of the object side of the Object
Pascal language: classes, objects, methods, constructors, inheritance, late binding,
interfaces, and more. Now we need to move one step further, by looking at some
more advanced and rather specific features of the language related to managing
classes. From class references to class helpers, this chapter covers many features not
found in other OOP languages, or at least implemented significantly differently.

The focus is classes, and manipulating classes at runtime, a topic we'll further aug-
ment when covering reflection and attributes in Chapter 16.

Class Methods and Class Data

When you define a class in Object Pascal and most other OOP language, you define
the data structure of the objects (or instances) of the class and the operations that
you can perform on such an object. There is also the possibility, however, to define

Marco Cantù, Object Pascal Handbook

328 - 12: Manipulating Classes

data shared among all objects of the class and methods that can be called for the
class independently from any actual object created from it.

To declare a class method in Object Pascal, you simply add the class keyword in
front of it and you can see this for both procedures and functions:

type
 TMyClass = class
 class function ClassMeanValue: Integer;

Given an object MyObject of class TMyClass, you can call the method either by apply-
ing it to an object or to the class as a whole:

 I := TMyClass.ClassMeanValue;
 J := MyObject.ClassMeanValue

This syntax implies you can call the class method even before an object of the class
has been created. There are scenarios of classes made only of class methods, with
the implicit idea that you'll never create an objects of these classes (something you
can enforce by declaring the Create constructor private).

note The use of class methods in general and of classes made only of class methods in particular is more
common in OOP languages that don't allow the use of global functions. Object Pascal still let's you
declare old-fashioned global functions, but over recent years the system libraries and the code
written by developers has moved more and more towards a consistent use of class methods. The
advantage of using class methods is that they become logically tied to a class, which acts as a sort
of namespace for a group of related functions.

Virtual Class Methods and the Hidden Self
Parameter

While the concept of class methods is shared among programming languages, the
Object Pascal implementation has a few peculiarities. First, class methods have an
implicit (or hidden) self parameter, much like instance method. However, this hid-
den self parameter is a reference to the class itself, not to an instance of the class.

At first sight, the fact that a class method has a hidden parameter that refers to the
class itself might seem quite useless. The compiler knows the class of a method,
after all. However, there is a peculiar language feature that explains this: Unlike
most other languages, in Object Pascal class methods can be virtual. In a derived
class, you can override a base type class method, like you can do for a regular
method.

Marco Cantù, Object Pascal Handbook

12: Manipulating Classes - 329

note The support for virtual class method is connected with the support for virtual constructors (which
are some sort of special purpose class methods). Both features are not found in many compiled
and strongly typed OOP languages.

Class Static Methods

Class static methods have been introduced in the language for platform compatibil-
ity. The differences between ordinary class methods and class static methods are
that class static methods have no references to their own class (no self parameter
indicating the class itself) and cannot be virtual.

Here is a simple example with some incorrect statements commented out, taken
from the ClassStatic application project:

type
 TBase = class
 private
 tmp: Integer;
 public
 class procedure One;
 class procedure Two; static;
 ...
 end;

class procedure TBase.One;
begin
 // Error: Instance member 'tmp' inaccessible here
 // Show (tmp);
 Show ('one');
 Show (self.ClassName);
end;

class procedure TBase.Two;
begin
 Show ('two');
 // error: Undeclared identifier: 'self'
 // Show (self.ClassName);
 Show (ClassName);
 Two;
end;

In both cases you can call these class methods directly or invoke them through an
object:

 TBase.One;
 TBase.Two;

Marco Cantù, Object Pascal Handbook

330 - 12: Manipulating Classes

 base := TBase.Create;
 base.One;
 base.Two;

There are two interesting features that make class static methods useful in Object
Pascal. The first is that they can be used to define class properties, as described in a
coming section. The second is that class static methods are fully C-language com-
patible, as explained below.

Static Class Methods and Windows API Callbacks

The fact they have no hidden self parameter implies static class methods can be
passed to the operating system (for example, on Windows) as callback functions. In
practice, you can declare a static class method with the stdcall calling convention
and use it as a direct Windows API callback, as I've done for the TimerCallBack
method of the StaticCallBack application project:

type
 TFormCallBack = class(TForm)
 ListBox1: TListBox;
 procedure FormCreate(Sender: TObject);
 private
 class var
 nTimerCount: Integer;
 public
 class procedure TimerCallBack (hwnd: THandle;
 uMsg, idEvent, dwTime: Cardinal); static; stdcall;
 end;

The class data is used by the callback as a counter. The OnCreate handler calls the
SetTimer API passing the address of the class static procedure:

procedure TFormCallBack.FormCreate(Sender: TObject);
var
 callback: TFNTimerProc;
begin
 nTimerCount := 0;
 callback := TFNTimerProc(@TFormCallBack.TimerCallBack);
 SetTimer(Handle, TIMERID, 1000, callback);
end;

note The parameter to TFNTimeProc is a method pointer which is why the name of the class static
method is proceeded by an @. We need to get the method address, not execute it.

Now the actual callback function increases the timer and updates the form, refer-
ring to it using the corresponding global variable, as a class method cannot refer to
the form as self:

Marco Cantù, Object Pascal Handbook

12: Manipulating Classes - 331

class procedure TFormCallBack.TimerCallBack(
 hwnd: THandle; uMsg, idEvent, dwTime: Cardinal);
begin
 try
 Inc (nTimerCount);
 FormCallBack.ListBox1.Items.Add (
 IntToStr (nTimerCount) + ' at ' + TimeToStr(Now));
 except on E: Exception do
 Application.HandleException(nil);
 end;
end;

The try-except block is there to avoid any exception being sent back to Windows...
a rule you have to use follow consistently for callback or DLL functions.

Class Data

Class data is data shared among all objects of the class, offering global storage but
class specific access (including access limitations). How do you declare class data?
Simply by defining a new section of the class marked with the class var keyword
combination:

type
 TMyData = class
 private
 class var
 CommonCount: Integer;
 public
 class function GetCommon: Integer;

The class var section introduces a block of one or more declarations. You can use a
var section (which is a new way to use this keyword) to declare other instance fields
in the same section (private below):

type
 TMyData = class
 private
 class var
 CommonCount: Integer;
 var
 MoreObjectData: string;
 public
 class function GetCommon: Integer;

In addition to declaring class data, you can also define class properties, as we'll see
in the next section.

Marco Cantù, Object Pascal Handbook

332 - 12: Manipulating Classes

Class Properties

As I mentioned, one of the reasons for using class static methods is to implement
class properties. What is a class property? Like a standard property it is a symbol
attached to read and write mechanisms. Unlike a standard property it relates to the
class and must be implemented using either class data or class static methods. The
TBase class (again, from the ClassStatic application project) has two class proper-
ties defined in the two different ways:

type
 TBase = class
 private
 class var
 fMyName: string;
 public
 class function GetMyName: string; static;
 class procedure SetMyName (Value: string); static;

 class property MyName: string
 read GetMyName write SetMyName;
 class property DirectName: string
 read fMyName write fMyName;
 end;

A Class with an Instance Counter

As I mentioned, class data and class methods can be used to hold information
regarding a class as a whole. An example of this type of information could be the
number of instances of the class that have been created so far... minus those that
have already been destroyed.

The CountObj application project shows this scenario. The program is not terribly
useful, given I preferred to focus only on the specific problem and its solution. In
other words, the target object has a very simple class, just storing a numeric value:

type
 TCountedObj = class (TObject)
 private
 FValue: Integer;
 private class var
 FTotal: Integer;
 FCurrent: Integer;
 public
 constructor Create;
 destructor Destroy; override;
 property Value: Integer read FValue write FValue;
 public

Marco Cantù, Object Pascal Handbook

12: Manipulating Classes - 333

 class function GetTotal: Integer;
 class function GetCurrent: Integer;
 end;

Every time an object is created, the program increments both counters after calling
the constructor of the base class (if any). Every time an object is destroyed, the
counter current objects counter is decreased:

constructor TCountedObj.Create (AOwner: TComponent);
begin
 inherited Create;
 Inc (FTotal);
 Inc (FCurrent);
end;

destructor TCountedObj.Destroy;
begin
 Dec (FCurrent);
 inherited Destroy;
end;

The class information can be accessed without having to refer to a specific object. In
fact, it might as well be that at a given time there are no objects in memory:

class function TCountedObj.GetTotal: Integer;
begin
 Result := FTotal;
end;

// display status
Label1.Text := TCountedObj.GetCurrent.ToString + '/' +
 TCountedObj.GetTotal.ToString;

This code is executed in a timer, which updates a label, so it doesn't need to refer to any
specific object instance nor it is triggered directly by any manual operation. The buttons
in the application project, instead, just create and free some of the objects... or leave
some around in memory (in fact the program has some potential memory leaks).

Class Constructors (and Destructors)

Class constructors offer a way to initialize data that relates to a class, and they have
the role of class initializers, as they really don't end up constructing anything. A
class constructor has nothing to to with a standard instance constructor: It is merely
code used to initialize the class itself once, before the class is used. For example, a
class constructor can set initial values for class data, load configuration or support
files for the class, and so on.

Marco Cantù, Object Pascal Handbook

334 - 12: Manipulating Classes

In Object Pascal a class constructor is an alternative to the unit initialization code.
In case both exist (in a unit), the class constructor will be executed first and then the
unit initialization code. Oppositely, you can define a class destructor that will be
executed after the finalization code.

A significant difference, however, is that while the unit initialization code is invari-
ably executed if the unit is compiled in the program, the class constructor and
destructor are linked only if the class is actually used. This means that the use of
class constructor is much more linker friendly than the use of initialization code.

note In other words, with class constructors and destructors, if the type is not linked the initialization
code is not part of the program and not executed; in the traditional case the opposite is true, the
initialization code might even cause the linker to bring in some of the class code, even if it is never
actually used anywhere else. In practical terms, this was introduced along with the gesturing
framework, a rather large amount of code that is not compiled into the executable if it is not used.

In terms of code, you can write the following (taken from the ClassCtor application
project):

type
 TTestClass = class
 public
 class var
 StartTime: TDateTime;
 EndTime: TDateTime;
 public
 class constructor Create;
 class destructor Destroy;
 end;

The class has two class data fields, initialized by the class constructor, and modified
by a class destructor, while the initialization and finalization sections of the
unit uses these data fields:

class constructor TTestClass.Create;
begin
 StartTime := Now;
end;

class destructor TTestClass.Destroy;
begin
 EndTime := Now;
end;

initialization
 ShowMessage (TimeToStr (TTestClass.StartTime));

finalization
 ShowMessage (TimeToStr (TTestClass.EndTime));

Marco Cantù, Object Pascal Handbook

12: Manipulating Classes - 335

What happens is that the start up sequence works as expected, with the class data
already available as you show the information. When closing, instead, the ShowMes-
sage call is executed before the value is assigned by the class destructor, which is
executed at the very end.

Notice that you can give the class constructor and destructor any name, although
Create and Destroy would be very good defaults. You cannot, however, define mul-
tiple class constructors or destructors. If you try, the compiler will issue the
following error message:

[DCC Error] ClassCtorMainForm.pas(34): E2359 Multiple class
constructors in class TTestClass: Create and Foo

Class Constructors in the RTL

There are a few RTL classes that already take advantage of this language feature,
like the Exception class that defines both a class constructor (with the code below)
and a class destructor:

class constructor Exception.Create;
begin
 InitExceptions;
end;

The InitExceptions procedure was previously called in the initialization section of
the System.SysUtils unit.

In general, I think that using class constructors and destructors is better than using
unit initialization and termination. In most cases, this is only syntactic sugar, so you
might not want to go back and change existing code. However, if you face the risk of
initializing data structures you'll never used (because no class of that type is ever
created) moving to class constructors will provide a definitive advantage. This is
clearly more often the case in a general library, of which you don't use all of the fea-
ture, than of application code.

note A very specific case of the use of class constructors is in case of generic classes. I'll cover it in the
chapter focused on generics.

Implementing the Singleton Pattern

There are classes for which it makes sense to create one and only one single
instance. The Singleton pattern (another very common design pattern) requires this
and also suggests having a global point of access to this object.

Marco Cantù, Object Pascal Handbook

336 - 12: Manipulating Classes

The singleton pattern can be implemented in many ways, but a classic approach is
to call the function used to access to the only instance exactly as Instance. In many
cases, the implementation also follows the lazy initialization rule, so that this global
instance is not created when the program starts but only the first time is it needed.

In the implementation below I took advantage of class data, class methods, but also
a class destructors for the final clean up. Here is the relevant code:

type
 TSingleton = class(TObject)
 public
 class function Instance: TSingleton;
 private
 class var theInstance: TSingleton;
 class destructor Destroy;
 end;

class function TSingleton.Instance: TSingleton;
begin
 if theInstance = nil then
 theInstance := TSingleton.Create;
 Result := theInstance;
end;

class destructor TSingleton.Destroy;
begin
 FreeAndNil (theInstance);
end;

You can grab the single instance of the class (regardless of the fact this has already
been created or not) by writing:

var
 aSingle: TSingleton;
begin
 aSingle := TSingleton.Instance;

Furthermore, you could hide the regular class constructor, declaring it private, so
that it will be very difficult to create an object of the class without following the pat-
tern.

Class References

Having looked at several topics related to methods, we can now move on to the topic
of class references and extend our example of dynamically creating components
even further. The first point to keep in mind is that a class reference isn’t a class, it

Marco Cantù, Object Pascal Handbook

12: Manipulating Classes - 337

isn’t an object, and it isn’t a reference to an object; it is simply a reference to a class
type.

A class reference type determines the type of a class reference variable. Sounds con-
fusing? A few lines of code might make this a little clearer. Suppose you have
defined the class TMyClass. You can now define a new class reference type, related
to that class:

type
 TMyClassRef = class of TMyClass;

Now you can declare variables of both types. The first variable refers to an object,
the second to a class:

var
 AClassRef: TMyClassRef;
 AnObject: TMyClass;
begin
 AClassRef := TMyClass;
 AnObject := TMyClass.Create;

You may wonder what class references are used for. In general, class references
allow you to manipulate a class data type at run time. You can use a class reference
in any expression where the use of a data type is legal. Actually, there are not many
such expressions, but the few cases are interesting. The simplest case is the creation
of an object. We can rewrite the two lines above as follows:

AClassRef := TMyClass;
AnObject := AClassRef.Create;

This time I’ve applied the Create constructor to the class reference instead of to an
actual class; I’ve used a class reference to create an object of that class.

note Class references are related with the concept of metaclass available in other OOP languages. In
Object Pascal, however, a class reference is not itself a class, but only a specific type defining a ref-
erence to class data. Therefore, the analogy with metaclasses (classes describing other classes) is a
little misleading. Actually, TMetaclass is also the term used in C++Builder.

When you have a class reference you can apply to it the class methods of the related
class. So if TMyClass had a class method called Foo, you'd be able to write either:

TMyClass.Foo
AClassRef.Foo

That wouldn't be terribly useful, if class references didn’t support the same type-
compatibility rule that applies to class types. When you declare a class reference
variable, such as MyClassRef above, you can then assign to it that specific class and
any subclass. So if MyNewClass is a subclass of my class, you can also write

AClassRef := MyNewClass;

Marco Cantù, Object Pascal Handbook

338 - 12: Manipulating Classes

Now to understand why this can indeed be interesting you have to remember that
the class methods you can call for a class reference can be virtual, so the specific
subclass can override them. Using class references and virtual class methods you
can implement a form of polymorphism at the class method level that few (if any) of
the other static OOP languages support.

Consider also that each class inherits from TObject, so you can apply to each class
reference some of the methods of TObject, including InstanceSize, ClassName,
ParentClass, and InheritsFrom. I’ll discuss these class methods and other methods
of TObject class in Chapter 17.

Class References in the RTL

The System unit and other core RTL units declare a lot of class references, including
the following:

TClass = class of TObject;
ExceptClass = class of Exception;
TComponentClass = class of TComponent;
TControlClass = class of TControl;
TFormClass = class of TForm;

In particular, the TClass class reference type can be used to store a reference to any
class you write in Object Pascal, because every class is ultimately derived from TOb-
ject. The TFormClass reference, instead, is used in the source code of the default
Object Pascal project based on FireMonkey or the VCL. The CreateForm method of
the Application object of both libraries, in fact, requires as parameter the class of
the form to create:

Application.CreateForm(TForm1, Form1);

The first parameter is a class reference, the second is a variable that will receive a
reference to the created object instance.

Creating Components Using Class References

What is the practical use of class references in Object Pascal? Being able to manipu-
late a data type at run time is a fundamental element of the environment. When you
add a new component to a form by selecting it from the Component Palette, you
select a data type and create an object of that data type. (Actually, that is what the
development environment does for you behind the scenes.)

Marco Cantù, Object Pascal Handbook

12: Manipulating Classes - 339

To give you a better idea of how class references work, I’ve built an application
project called ClassRef. The form displayed by this example is quite simple. It has
three radio buttons, placed inside a panel in the upper portion of the form. When
you select one of these radio buttons and click the form, you’ll be able to create new
components of the three types indicated by the button labels: radio buttons, regular
push buttons, and edit boxes.

For this program to run properly, it needs to change the names of the three compo-
nents. The form must also have a class reference field:

private
 FControlType: TControlClass;
 FControlNo: Integer;

The first field stores a new data type every time the user clicks one of the three radio
buttons, changing its status. Here is one of the three methods:

procedure TForm1.RadioButtonRadioChange(Sender: TObject);
begin
 FControlType := TRadioButton;
end;

The other two radio buttons have OnChange event handlers similar to this one,
assigning the value TEdit or TButton to the FControlType field. A similar assign-
ment is also present in the handler of the OnCreate event of the form, used as an
initialization method.

The interesting part of the code is executed when the user clicks on a Layout control
that covers most of the surface of the form. I’ve chosen the OnMouseDown event of the
form to hold the position of the mouse click:

procedure TForm1.Layout1MouseDown(Sender: TObject;
 Button: TMouseButton; Shift: TShiftState; X, Y: Single);
var
 NewCtrl: TControl;
 NewName: String;
begin
 // create the control
 NewCtrl := FControlType.Create (Self);

 // hide it temporarily, to avoid flickering
 NewCtrl.Visible := False;

 // set parent and position
 NewCtrl.Parent := Layout1;
 NewCtrl.Position.X := X;
 NewCtrl.Position.Y := Y;

 // compute the unique name (and text)
 Inc (FControlNo);
 NewName := FControlType.ClassName + FControlNo.ToString;
 Delete (NewName, 1, 1);

Marco Cantù, Object Pascal Handbook

340 - 12: Manipulating Classes

 NewCtrl.Name := NewName;

 // now show it
 NewCtrl.Visible := True;
end;

The first line of the code for this method is the key. It creates a new object of the
class data type stored in the FControlType field. We accomplish this simply by
applying the Create constructor to the class reference. Now you can set the value of
the Parent property, set the position of the new component, give it a name (which is
automatically used also as Text), and make it visible.

Notice in particular the code used to build the name; to mimic Object Pascal’s
default naming convention, I’ve taken the name of the class with the expression
FControlType.ClassName, using a class method of the TObject class. Then I’ve
added a number at the end of the name and removed the initial letter of the string.
For the first radio button, the basic string is TRadioButton, plus the 1 at the end, and
minus the T at the beginning of the class name—RadioButton1. Looks familiar?

You can see an example of the output of this program in Figure 12.1. Notice that the
naming is not exactly the same as used by the IDE, which uses a separate counter
for each type of control. This program uses a single counter for all of the compo-
nents, instead. If you place a radio button, a push button, and an edit box in a form
of the ClassRef application, their names will be RadioButton1, Button2, and Edit3,
as shows in the image (although the edit has no visible description of its name).

Marco Cantù, Object Pascal Handbook

12: Manipulating Classes - 341

Figure 12.1:
An example of the
output of the ClassRef
application, under
Windows

As an aside, consider that once you've created a generic component, you can access
its properties in a very dynamic way, using reflection, a topic covered in detail in
Chapter 16. In that same chapter we'll see there are other ways to refer to type and
class information beside class references.

Class And Record Helpers

As we have seen in Chapter 8, the concept of inheritance among classes is a way to
expand a class providing new features, without affecting the original implementa-
tion in any way. This is an implementation of the co-called open-closed principle:
The data type is fully defined (closed), but still modifiable (open).

While type inheritance is an extremely powerful mechanism, there are scenarios in
which it is not ideal. The fact is that when you are working with existing and com-
plex libraries, you might want to be able to augment a data type without inheriting a

Marco Cantù, Object Pascal Handbook

342 - 12: Manipulating Classes

new one. This is particularly true when objects are created in some automatic way,
and replacing their creation can be extremely complex.

A rather obvious scenario for Object Pascal developers is the use of components. If
you want to add a method to a component class, to provide some new behavior to it,
you can indeed use inheritance but that implies: create the new derived type, create
a package to install it, replace all existing components in forms and other design
surfaces with the new component type (an operation that affects both the form defi-
nition and the source code file).

The alternative approach is to use a class or record helper. These special purpose
data types can extend an existing type with new methods. Even if the do have a few
limitations, class helpers let you handle a scenario like the one I just outlined simply
by adding new methods to an existing component, without any need to modify the
actual component type.

note We actually already saw an alternative approach for extending a library class without fully replac-
ing its references, by using inheritance and a same name class, the interposer class idiom. I
covered that idiom in the final section of the last chapter. Class helpers offer a cleaner model,
however they cannot be used to replace virtual methods or implement an extra interface, as I did
in the application of the last chapter.

Class Helpers

A class helper is a way to add methods and properties to a class you have no power
to modify (like a library class). Using a class helper to extend a class in your own
code is really unusual, as in this case you should generally just go ahead and change
the actual class.

What you cannot do in a class helper is add instance data, given the data should live
in the actual objects and these are defined by their original class, or touch the virtual
methods, again defined in the physical structure of the original class.

In other words, a helper class can only add to or replace non-virtual methods of an
existing class. This way you’ll be able to apply the new method to an object of the
original class, even if that class has no clue about the existence of the method.

If this is not clear, and it probably isn't, let’s look at an example (taken from the
ClassHelperDemo application project – which is just a demo of what you shouldn't
do, use class helpers to augment your own class):

type
 TMyObject = class
 protected

Marco Cantù, Object Pascal Handbook

12: Manipulating Classes - 343

 Value: Integer;
 Text: string;
 public
 procedure Increase;
 end;

 TMyObjectHelper = class helper for TMyObject
 public
 procedure Show;
 end;

The preceding code declares a class and a helper for this class. This means that from
an object of type TMyObject, you can call the method(s) of the class as well as each of
the methods of the class helper:

 Obj := TMyObject.Create;
 Obj.Text := 'foo';
 Obj.Show;

The helper class method becomes part of the class and can use Self just like any
other method to refer to the current object (of the class it helps because class
helpers are not instantiated), as this code demonstrates:

procedure TMyObjectHelper.Show;
begin
 Show (Text + ' ' + IntToStr (Value) + ' -- ' +
 ClassName + ' -- ' + ToString);
end;

Finally, notice that a helper class method can override the original method. In the
code I've added a Show method both to the class and to the helper class, but only the
helper class method gets called!

Of course, it makes very little sense to declare a class and an extension to the same
class using the class helper syntax in the same unit or even in the same program. I
did this in the demo only to make it easier to understand the technicality of this syn-
tax. Class helpers should not be used as a general language construct for developing
applications, but are mostly aimed at extending library classes you don't have the
source code for or you don't want to change, as the library maintainer will likely
change those in the future.

There are a few more rules that apply to class helpers. Class helper methods:

· can have different access specifiers than the original method in the class

· can be class methods or instance methods, class variables and properties

· can be virtual methods, which can be overridden in a derived class (although I
find this a bit awkward in practical terms)

· can introduce extra constructors

· can add nested constants to the type definition

Marco Cantù, Object Pascal Handbook

344 - 12: Manipulating Classes

The only feature they lack by design is instance data. Also note that class helpers are
enabled as they become visible in the scope. You need to add a uses statement refer-
ring to the unit that declares the class helper to see its methods, not just include it
once in the compilation process.

note For quite some time, there was a bug in the Delphi compiler that ended up allowing class helpers
to access private fields of the class they helped, regardless of the unit in which the class was
declared. This “hack” basically broke OOP encapsulation rules. To enforce visibility semantics,
class and record helpers in most recent versions of Object Pascal compilers (starting with 10.1
Berlincannot access private members of the classes or records that they extend. This has indeed
caused existing code not to work any more, code that was leveraging this hack (which was never
intended to be a language feature).

A Class Helper for a List Box

A practical use of class helpers is in providing extra methods for library classes. The
reason being you don't want to change those classes directly (even if you have the
source code, you don't really want to edit core library sources) or inherit from them
(as this would force you replace the components in the forms at design time).

As an example, consider this simple case: you want a simple way to get the text of
the current selection of a list box. Instead of writing the classic code:

ListBox1.Items [ListBox1.ItemIndex]

you can define a class helper as follows (taken from the ControlHelper project):

type
 TListboxHelper = class helper for TListBox
 function ItemIndexValue: string;
 end;

function TListboxHelper.ItemIndexValue: string;
begin
 Result := '';
 if ItemIndex >= 0 then
 Result := Items [ItemIndex];
end;

Now you can refer to the selected item of the list box as:

Show (ListBox1.ItemIndexValue);

This is just a very simple case, but it shows the idea in very practical terms.

Marco Cantù, Object Pascal Handbook

12: Manipulating Classes - 345

Class Helpers and Inheritance

The most significant limitation of helpers is that you can have only one helper for
each class at a given time. If the compiler encounters two helper classes, the second
will replace the first one. There is no way to chain class helpers, that is have a class
helper that further extends a class already extended with another class helper.

A partial solution to this issue comes from the fact you can introduce a class helper
for a class and add a further class helper for an inherited class... but you can't
directly inherit a class helper from another class helper. I don't really encourage get-
ting into complex class helper structures, because they can really turn your code
into some very convoluted code.

An example would be the TGUID record, a Windows data structure you can actually
use across platforms in Object Pascal, that has a helper adding a few common capa-
bilities:

type
 TGuidHelper = record helper for TGUID
 class function Create(const B: TBytes): TGUID; overload; static;
 class function Create(const S: string): TGUID; overload; static;
 // ... more Create overloads omitted
 class function NewGuid: TGUID; static;
 function ToByteArray: TBytes;
 function ToString: string;
 end;

You may have noticed that TGuidHelper is a record helper rather than a class
helper. Yes, records can have helpers just like classes can.

Record Helpers for Intrinsic Types

A further extension of the record helper concepts is the ability to add methods to
native (or compiler intrinsic) data types. Although the same “record helper” syntax
is used, this is not applied to records but to regular data types.

note Record helpers are currently used to augment and add method-like operations to native data
types, but this might as well change in the future. Todays's runtime library defines a few native
helpers that might disappear in the future, preserving the way you write code that uses those
helpers... but breaking compatibility in the code that defines them. That's why you should not
overuse this feature, even if it certainly very nice and handy.

Marco Cantù, Object Pascal Handbook

346 - 12: Manipulating Classes

How do intrinsic type helpers work in practice? Let's consider the following defini-
tion of a helper for the Integer type:

type
 TIntHelper = record helper for Integer
 function AsString: string;
 end;

Now given given an Integer variable n, you can write:

n.AsString;

How do you define that pseudo-method and how can it refer to the variable's value?
By stretching the meaning of the self keyword to refer to the value the function is
applied to:

function TIntHelper.AsString: string;
begin
 Result := IntToStr (self);
end;

Notice that you can apply methods also to constants, like in:

 Caption := 400000.AsString;

However, you cannot do the same for a small value, as the compiler interprets con-
stants of the smaller possible type. So if you want to get out the value 4 as a string
you have to use the second form:

 Caption := 4.AsString; // nope!
 Caption := Integer(4).AsString; // ok

Or you can make the first statement to compile by defining a different helper:

type
 TByteHelper = record helper for Byte...

As we already saw in Chapter 2, you don't really need to write the code above for
types like Integer and Byte, as the runtime library defines a pretty comprehensive
list of class helpers for most core data types, including the following which are
defined in the System.SysUtils unit:

TStringHelper = record helper for string
TSingleHelper = record helper for Single
TDoubleHelper = record helper for Double
TExtendedHelper = record helper for Extended
TByteHelper = record helper for Byte
TShortIntHelper = record helper for ShortInt
TSmallIntHelper = record helper for SmallInt
TWordHelper = record helper for Word
TCardinalHelper = record helper for Cardinal
TIntegerHelper = record helper for Integer
TInt64Helper = record helper for Int64
TUInt64Helper = record helper for UInt64
TNativeIntHelper = record helper for NativeInt
TNativeUIntHelper = record helper for NativeUInt

Marco Cantù, Object Pascal Handbook

12: Manipulating Classes - 347

TBooleanHelper = record helper for Boolean
TByteBoolHelper = record helper for ByteBool
TWordBoolHelper = record helper for WordBool
TLongBoolHelper = record helper for LongBool
TWordBoolHelper = record helper for WordBool

There are a few other intrinsic type helpers currently defined in other units, like:

// System.Character:
TCharHelper = record helper for Char
// System.Classes:
TUInt32Helper = record helper for UInt32

Given I've covered the use of these helpers in many examples in the initial part of
the book, there is no need to reiterate them here. What this section added is a
description of how you can define an intrinsic type helper.

Helpers for Type Aliases

As we saw, it isn't possible to define two helpers for the same type, let alone an
intrinsic type. So how do you add an extra direct operation to a native type, like
Integer? While there is no clear cut solution, there are some possible workarounds
(short of copying the internal class helper source code and duplicating it with the
extra method).

A solution I like is the definition of a type alias. A type alias is seen as a brand new
type by the compiler, so it can have its own helper without replacing the helper of
the original type. Now given the types are separate, you still cannot apply methods
of both class helpers to the same variable, but one of the sets will be a type cast
away. Let me explain this in code terms. Suppose you create a type alias like:

type
 MyInt = type Integer;

Now you can define a helper for this type:

type
 TMyIntHelper = record helper for MyInt
 function AsString: string;
 end;

function MyIntHelper.AsString: string;
begin
 Result := IntToStr (self);
end;

If you declare a variable of this new type, you can invoke the methods specific
helper, but still call the Integer type helper methods with a cast:

Marco Cantù, Object Pascal Handbook

348 - 12: Manipulating Classes

procedure TForm1.Button1Click(Sender: TObject);
var
 mi: MyInt;
begin
 mi := 10;
 Show (mi.asString);
 // Show (mi.toString); // this doesn't work
 Show (Integer(mi).ToString)
end;

This code is in the TypeAliasHelper application project, for you to try out further
variations.

Marco Cantù, Object Pascal Handbook

13: Objects and Memory - 349

13: objects and

memory

This chapter focused on a very specific but quite important topic, that is memory
management in the Object Pascal language. The language and its runtime environ-
ment offer a rather unique solution, which is in-between C++ style manual memory
management and Java or C# garbage collection.

The reason for this in-between approach is it helps avoiding most of the manual
memory managements hassles (but clearly not all), without the constraints and the
problems caused by garbage collection, from extra memory allocation to non-deter-
ministic disposal.

note I have no particular intention of delving into the problems of GC (Garbage Collection) strategies
and how they are implemented in the various platforms. This is more of a research topic. What is
relevant is that on constrained devices like mobile ones, GC seems to be far from ideal, but some
of the same issues apply on every platform.

What makes things a little extra complicated in Object Pascal, though, is that fact
that the traditional desktop compilers and the more recent mobile compilers
diverge in their core memory management model, the former being more “manual”

Marco Cantù, Object Pascal Handbook

350 - 13: Objects and Memory

while the latter embraced ARC, automatic reference counting. Add to that the refer-
ence counting mechanism supported by interfaces, the component-based ownership
model, and a few other options, and you easily figure out this is not a simple topic.
This chapter is here to address it, starting with some of the foundations of the mem-
ory management in modern programming languages and the concepts behind the
object reference model.

Global Data, Stack, and Heap

The memory used by any Object Pascal application on any platform can be divided
into two areas: code and data. Portions of the executable file of a program, of its
resources (bitmaps and form description files), and of the libraries used by the pro-
gram are loaded in its memory space. These memory blocks are read-only, and (on
some platforms like Windows) they can be shared among multiple processes.

It is more interesting to look at the data portion. The data of an Object Pascal pro-
gram (like that of programs written in most other languages) is stored in three
clearly distinct areas: the global memory, the stack, and the heap.

Global Memory

When the Object Pascal compiler generates the executable file, it determines the
space required to store variables that exist for the entire lifetime of the program.
Global variables declared in the interface or in the implementation portions of a
unit fall into this category. Note that if a global variable is of a class type (but also a
string or a dynamic array), only a 4-byte or 8-byte object reference is stored in the
global memory.

You can determine the size of the global memory by using the Project | Information
menu item after compiling a program and looking to the value for data size. Figure
13.1, shows a usage of almost 205K of global data, which includes global data of both
your program and the libraries you use.

Global memory is sometimes called static memory as once your program is loaded
the variables are never moved from their original location nor is the memory
released.

Marco Cantù, Object Pascal Handbook

13: Objects and Memory - 351

Figure 13.1: The
information about a
compiled program.

Stack

The stack is a dynamic memory area, which is allocated and deallocated following
the LIFO order: Last In, First Out. This means that the last memory object you’ve
allocated will be the first to be deleted.

Stack memory is typically used by routines (procedure, function, and method calls)
for passing parameters and their return values and for the local variables you
declare within a function or method. Once a routine call is terminated, its memory
area on the stack is released. Remember, anyway, that using Object Pascal’s default
register-calling convention, the parameters are passed in CPU registers instead of
the stack whenever possible.

Notice also that stack memory is generally not initialized nor cleaned up, to save
time. This is why if you declare, say, an Integer as a local variable and just read its
value, you can find pretty much everything. All local variables need to be initialized
before they are used.

The size of the stack is generally fixed and determined by the compilation process.
You can set this parameter in the linker page of the Project options. However, the
default is generally OK. If you receive a “stack overflow” error messages, this is
probably because you have a function recursively calling itself forever, not because
the stack space is too limited. The initial stack size is another piece of information
provided by the Project | Information dialog.

Heap

The heap is the area in which the allocation and deallocation of memory happens in
random order. This means that if you allocate three blocks of memory in sequence,

Marco Cantù, Object Pascal Handbook

352 - 13: Objects and Memory

they can be destroyed later on in any order. The heap manager takes care of all the
details, so you simply ask for new memory with the low-level GetMem function or by
calling a constructor to create an object, and the system will return a new memory
block for you (possibly reusing memory blocks already discarded). Object Pascal
uses the heap for allocating the memory of each and every object, the text of strings,
for dynamic arrays, and for most other data structures.

Because it is dynamic, the heap is the memory area where programs generally have
the most problems:

· Every time an object is created, it needs to be destroyed. Failing to do so is a sce-
nario called “memory leak”, which won't do too much harm unless it is repeated
over and over until the entire heap memory is full.

· Every time an object is destroyed, you have to make sure this is not used any
more, or the program doesn't try to destroy it a second time.

The same is true for any other dynamically created data structure, but the language
runtime looks after strings and dynamic arrays in a mostly automatic way, so you
almost never have to worry about those.

The Object Reference Model

As we have seen in Chapter 7, objects in the language are implemented as refer-
ences. A variable of a class type is just a pointer to the memory location on the heap
where the object data lives. There is actually a little extra information, like a class
reference, a way to access the object virtual methods table, but this is outside of the
focus of this chapter.

We have also seen how assigning an object to another only makes a copy of the ref-
erence, so you'll have two references to a single object in memory. To have two
completely separate objects, you need to create a second one and copy the first
object's data to it (an operation not available automatically, as its implementation
details could vary depending on the actual data structure).

In coding terms, if you write

var
 Button2: TButton;
begin
 Button2 := Button1;

Marco Cantù, Object Pascal Handbook

13: Objects and Memory - 353

you don’t create a new object but rather a new reference to the same object in mem-
ory. There is only one object in memory, and both the Button1 and Button2
variables refer to it.

Passing Objects as Parameters

Something similar happens when you are passing an object as a parameter to a
function or a method. In general terms, you are just copying the reference to the
same object, and within the method or function you can do operations on that object
and modify it, regardless of the fact the parameters is passed as a const parameter.

For example, by writing this procedure and calling it as follows, you’ll modify the
caption of Button1, or AButton if you prefer:

procedure ChangeCaption (AButton: TButton; Text: string);
begin
 AButton.Text := Text;
end;

// call...
ChangeCaption (Button1, ‘Hello’)

What if you need to create a new object, instead? You’ll basically have to create it
and then copy each of the relevant properties. Some classes, notably most classes
derived from TPersistent, and not from TComponent, define an Assign method to
copy the data of an object. For example, you can write

ListBox1.Items.Assign (Memo1.Lines);

Even if you assign those properties directly, Object Pascal will execute similar code
for you. In fact, the SetItems method connected with the items property of the list
box calls the Assign method of the TStringList class representing the actual items
of the listbox.

So let's try to recap what the various parameters passing modifiers do when applied
to objects:

· If there is no modifier, you can do any operation on the object and the variable
referring to it. You can modify the original object, but if you assign a new object
to the parameter this new object will have nothing to do with the original one
and the variable referring to it.

· If there is a const modifier, you can change values and call methods of the
object, but you cannot assign a new object to the parameter. On ARC platform,
this is a more efficient form or parameters passing, as there is no need to
increase and decrease the object reference count.

Marco Cantù, Object Pascal Handbook

354 - 13: Objects and Memory

· If there is a var modifier, you can change anything in the object and also replace
the original object with a new one in the calling location, as happens with other
var parameters.

Traditional Memory Management Tips

Memory management in Object Pascal is subject to two simple rules: You must
destroy every object and memory block you create and allocate, and you must
destroy each object and free each block only once. Object Pascal supports three
types of memory management for dynamic elements (that is, elements not in the
stack and the global memory area), detailed in this remaining part of this section:

· Every time you create an object, you should also free it. If you fail to do so, the
memory used by that object won’t be released for other objects, until the pro-
gram terminates.

· When you create a component, you can specify an owner component, passing the
owner to the component constructor. The owner component (often a form or
data module) becomes responsible for destroying all the objects it owns. In other
words, when you free the form, it frees all the components it owns. So, if you cre-
ate a component and give it an owner, you don’t have to worry about destroying
it.

· When you allocate memory for strings, dynamic arrays, and objects referenced
by interface variables (as discussed Chapter 11), Object Pascal automatically frees
the memory when the reference goes out of scope. You don’t need to free a
string: when it becomes unreachable, its memory is released. Something similar
happens under ARC, as we'll see later on.

Destroying Objects You Create

In the most simple scenario, on desktop compilers you have to create the temporary
objects you destroy. Any non-temporary object should have an owner, be part of a
collection, or be reachable thought some data structure, which will become respon-
sible for destroying it in due time.

The code used to create and destroy a temporary object is generally encapsulated in
a try-finally block, so that the object is destroyed even if something goes wrong
when using it:

Marco Cantù, Object Pascal Handbook

13: Objects and Memory - 355

MyObj := TMyClass.Create;
try
 MyObj.DoSomething;
finally
 MyObj.Free;
end;

Another common scenario is that an an object used by another one, which becomes
its owner:

constructor TMyOwner.Create;
begin
 SubObj := TSubObject.Create;
end;

destructor TMyOnwer.Destroy;
begin
 SubObj.Free;
end;

There are some common more complex scenarios, in case the subject is not created
until needed (lazy initialization) or might be destroyed before the owner, in case it is
not needed any more. To implement lazy initialization, you don't create the subject
in the owner object constructor, but when it is needed:

function TMyOwner.GetSubObject: TSubObject
begin
 if not Assigned (SubObj) then
 SubObj := TSubObject.Create;
 Result := SubObj;
end;

destructor TMyOnwer.Destroy;
begin
 SubObj.Free;
end;

Notice you don't need to test if the object is assigned before freeing it, because this
is exactly what Free does, as we'll see in the next section.

Destroying Objects Only Once

Another problem is that if you call the destructor of an object twice, you get an
error. A destructor is a method that de-allocates an object’s memory. We can write
code for a destructor, generally overriding the default Destroy destructor, to let the
object execute some code before it is destroyed. In your code, of course, you don’t
have to handle memory de-allocation—this is something the runtime library does
for you.

Marco Cantù, Object Pascal Handbook

356 - 13: Objects and Memory

Destroy is a virtual destructor of the TObject class. Most of the classes that require
custom clean-up code when the objects are destroyed override this virtual method.
The reason you should never define a new destructor is that objects are usually
destroyed by calling the Free method, and this method calls the Destroy virtual
destructor (possibly the overridden version) for you.

As I’ve just mentioned, Free is simply a method of the TObject class, inherited by all
other classes. The Free method basically checks whether the current object (Self) is
not nil before calling the Destroy virtual destructor.

note You might wonder why you can safely call Free if the object reference is nil, but you can’t call
Destroy. The reason is that Free is a known method at a given memory location, whereas the
virtual function Destroy is determined at run time by looking at the type of the object, a very
dangerous operation if the object doesn’t exist any more.

Here is its pseudocode for Free (which changes quite a bit in case on the ARC sce-
nario):

procedure TObject.Free;
begin
 if Self <> nil then
 Destroy;
end;

Next, we can turn our attention to the Assigned function. When we pass a pointer to
this function, it simply tests whether the pointer is nil. So the following two state-
ments are equivalent, at least in most cases:

if Assigned (MyObj) then ...
if MyObj <> nil then ...

Notice that these statements test only whether the pointer is not nil; they do not
check whether it is a valid pointer. If you write the following code

MyObj.Free;
if MyObj <> nil then
 MyObj.DoSomething;

the test will be satisfied, and you’ll get an error on the line with the call to the
method of the object. It is important to realize that calling Free doesn’t set an
object's reference to nil.

Automatically setting an object to nil is not possible. You might have several refer-
ences to the same object, and Object Pascal doesn’t track them on the traditional,
non-ARC compilers. At the same time, within a method (such as Free) we can oper-
ate on the object, but we know nothing about the object reference—the memory
address of the variable we’ve used to call the method.

Marco Cantù, Object Pascal Handbook

13: Objects and Memory - 357

In other words, inside the Free method or any other method of a class, we know the
memory address of the object (Self), but we don’t know the memory location of the
variable referring to the object, such as ToDestroy. Therefore, the Free method can-
not affect the MyObj variable.

However, when we call an external procedure, such as FreeAndNil, the procedure
knows about the object reference, passed as a parameter, and can act on it. Here is
Object Pascal code for FreeAndNil:

procedure FreeAndNil(var Obj);
var
 P: TObject;
begin
 P := TObject(Obj);
 // clear the reference before destroying the object
 TObject(Obj) := nil;
 P.Free;
end;

To sum things up, here are a couple of guidelines:

· Always call Free to destroy objects, instead of calling the Destroy destructor.

· Use FreeAndNil, or set object references to nil after calling Free, unless the ref-
erence is going out of scope immediately afterward.

Welcome to ARC

What I have covered so far is the classic Object Pascal memory management sce-
nario (with the exclusion of interface variables and other cases I already covered in
the specific chapters). Things change rather drastically when you are using one of
the ARC-enabled compilers.

note As the time of this writing, the Object Pascal compilers supporting ARC are: the iOS 32-bit and
64-bit compilers, the Android compiler, the iOS Simulator compiler. The compilers not support-
ing ARC are the Windows 32 bit and 64 bit compilers and the Mac OS X compiler.

But what is ARC, and where did it originate? Automatic Reference Counting is a fea-
ture introduced by Apple in its Objective-C compilers for iOS, and later brought by
Apple to other languages and platforms. The implementation in itself is fully part of
the LLVM infrastructure and CLANG. You can learn more about the concepts
behind ARC by referring to its use in Objective-C (within the CLANG project) at:

http://clang.llvm.org/docs/AutomaticReferenceCounting.html

Marco Cantù, Object Pascal Handbook

358 - 13: Objects and Memory

As you can see in that page, ARC is a way to manage an object’s lifetime without the
need to explicitly free objects you don’t need any more. As the reference to the
object (for example, a local variable) goes out of scope, the object will be automati-
cally destroyed. Object Pascal has reference counting support for strings and for
objects referenced through interface-type variables. So, talking of objects, the clos-
est thing to ARC in the Object Pascal traditional compilers is the use of interfaces.
Differently from Garbage Collection (GC), ARC is deterministic, and objects are cre-
ated and destroyed within the application flow, and not by a separate background
thread. This has both advantages and disadvantages, but a discussion of GC vs. ARC
is way beyond the scope of this book.

ARC Coding Style

When you are using an ARC-enabled compiler, which supports reference counting,
you can create a temporary object within a method and forget about cleaning it up.
Not only the new code doesn't need a Free call, but certain managed types have
automatic try-finally blocks, you don't need to add an exception block either:

var
 MyObj: TMyClass;
begin
 MyObj := TMyClass.Create;
 MyObj.DoSomething;
end;

What happens here is that the destructor for the object is called as the program
reaches the end statement, that is, when the MyObj variable goes out of scope. If, for
any reason, you want to stop using the object before the end of the method, for
example because the method is lengthly, you can set the variable to nil:

var
 MyObj: TMyClass;
begin
 MyObj := TMyClass.Create;
 MyObj.DoSomething;
 MyObj := nil;
 // some other code not using MyObj
end;

In this case, the object is destroyed before the end of the method, exactly as we set
the variable to nil.

Given there is no try-finally block, what happens in case the DoSomething proce-
dure raises an exception? The nil assignment statement will be skipped, but as the
method terminates, the object is still destroyed.

Marco Cantù, Object Pascal Handbook

13: Objects and Memory - 359

In summary, reference counting is triggered as soon as you assign an object to a
variable and when a variable goes out of scope, regardless of whether it is a local
stack-based variable, a temporary one added by the compiler, or a field of another
object. In this respect, when an object owns another object and refers to it, you don't
need to free the owned object in the owner object destructor under an ARC com-
piler.

The same holds for parameters: When you pass an object as parameter to a func-
tion, the object’s reference count is incremented and when the function terminates
and returns, it is decremented:

function UseObject (AnObj: TMyClass);
begin
 ...
end;

var
 MyObj: TMyClass;
begin
 MyObj := TMyClass.Create; // refcount to 1
 UseObject (MyObj); // refcount to 2, then back to 1
end; // refcount to 0, object destroyed

note Exactly as it happens for strings, you can optimize parameters passing by using the const modi-
fier. An object passed as a constant, doesn’t incur the reference counting overhead. Given the
same modifier can be used also on Windows, where it is useless, it is a good suggestion to update
your code to use const object parameters, and const string parameters. Don’t expect a very signifi-
cant speed improvement, though, as the reference counting overhead is very small.

To better understand the objects lifetime and follow the program flow to under-
stand the reference counting mechanism behind ARC, you can query the reference
count of an object using the new RefCount property.

You should not use this property to alter the object's lifetime or the program flow,
but only as a mean for checking the status of an object and understanding the
model. Of course, this property is present for all objects but only on those platforms
with reference counting.

note There are some very special scenarios in which you want to write the best code for both ARC and
non-ARC compilers, for example in a library. In this case, rather than checking for individual
compiler and platforms (which might behave differently in the future), you might want to con-
sider using the {$IFDEF AUTOREFCOUNT} directive to discriminate among the two models. This is
an important directive, different from the NEXTGEN directive, which is tied to the LLVM-based
compilers in general. In fact it might well be that ARC is implemented also on top of the classic
Delphi compiler in the future(something that already happens in the iOS Simulator).

Marco Cantù, Object Pascal Handbook

360 - 13: Objects and Memory

The Free and DisposeOf Methods Under ARC

Object Pascal developers are used to calling the Free method and generally protect
it with a try-finally block. Given most developers who used the language for a
long time will have a lot of code based on this pattern, and might still need to write
this code for Delphi for Windows compatibility, it is important to focus on the use of
Free under ARC.

In short, your existing code will work, but you should keep reading this section to
understand how it works, what changes, and which options are available. For exam-
ple, you’d generally write the code above as:

var
 MyObj: TMySimpleClass;
begin
 MyObj := TMySimpleClass.Create;
 try
 MyObj.DoSomething;
 finally
 MyObj.Free;
 end;
end;

In the classic, non-ARC Object Pascal compilers, Free is a method of TObject that
checks if the current reference is not nil and if this is the case calls the Destroy
destructor, which removes the objects from memory after executing the proper
destructor code.

In the new ARC Object Pascal compilers, instead, the call to Free is “replaced” with
the assignment of the variable to nil. Where this was the last reference to the
object, it will still be removed from memory after calling its destructor. In this case
the behavior is identical between the two memory models. If there are other out-
standing references, nothing happens (except for a decrease in the reference count),
which is different from the traditional model, in which the object gets deleted any-
way and you end up with a dangling reference (a reference to an object that doesn't
exist any more).

What about calling FreeAndNil (MyObj), rather than just calling Free? The scenario
is almost identical, as the only different is that in non-ARC compilers we also have
the object reference set to nil, something the ARC compilers do anyway when Free
is called.

So is this all fine? Well, in most cases but not always. There are scenarios when you
really want to execute the destructor code (maybe closing a file or a database con-
nection) right away, regardless of the fact that there might be other pending
references. There are also cases in the Object Pascal RTL libraries and other third

Marco Cantù, Object Pascal Handbook

13: Objects and Memory - 361

party libraries, in which there are other pending references and invoking the
destructor will in fact release those references (like in case of a parent/child rela-
tionship among objects). Now this can at times be solved using weak references,
covered later, but another option is to force the immediate execution of the destruc-
tor code.

To allow the developer to force the execution of the code in the destructor of an
object (without releasing the actual object from memory), the ARC-based compilers
introduce a dispose pattern. If you call:

MyObject.DisposeOf;

it forces execution of the destructor code, even if there are pending references to the
object. At this point the object is placed in a special state, so that the destructor
won’t be called again in case of further disposal operations or when the reference
counting reaches zero and memory is actually released. This “disposed” state (or
“zombie” state) is quite significant to consider in code, and this is why you can
query the status of an object using the Disposed property.

As an example, if you need to force immediate execution of the destructor, you can
write the code as follows:

var
 MyObj: TMySimpleClass;
begin
 MyObj := TMySimpleClass.Create;
 try
 MyObj.DoSomething;
 finally
 MyObj.DisposeOf;
 end;
end;

Now the question becomes, will this code work under non-ARC compilers? With
those compilers the call to DisposeOf is mapped to a call to Free, so you basically get
the same behavior.

Now few developers have asked if given this code is equivalent, could it not be
mapped to the standard and commonly used Free call? In my opinion, that would
have been a bad idea, because using DisposeOf should not become standard prac-
tice for ARC-enabled code. It is much better to use weak references or reorganize
the memory management around new concepts, than trying a one-size-fits-all
approach. Given that Free is a very common call in non-ARC Object Pascal code and
that setting a reference to nil should be the norm under ARC, having these two con-
cepts mapped one to the other (rather than to disposal) is the approach that ensures
the smoothest transition and the highest degree of compatibility.

Marco Cantù, Object Pascal Handbook

362 - 13: Objects and Memory

note The actual storage for the Disposed “flag”, rather than being an extra field, is a bit in the FRef-
Count field every object has under ARC. Given that a second bit is used for related destruction-
tracking purposes, the reference count has a theoretical limit of 2^30, which could hardly be seen
as a real limit.

As Allen Bauer (RAD Studio R&D Chief Scientist) suggested to me in a conversa-
tion, one way to look at the difference between Free and DisposeOf is to consider
the intent of the two operations under ARC (as opposed to what happens under the
classic Delphi compilers).

· When using Free, the intent is that the specific reference should simply “detach”
from the instance. It does not imply any kind of disposal or memory de-alloca-
tion. It’s merely that that block of code doesn’t need that reference anymore.
Usually this will simply happen upon exiting the scope, but you can force it by
calling Free explicitly.

· By contrast, DisposeOf is the programmer’s way of explicitly telling the instance
that it needs to “clean itself up.” DisposeOf never necessarily implies memory
de-allocation; it merely does an explicit “clean-up” of the instance (executing any
specific destructor code). The instance still relies on the normal reference count-
ing semantics to eventually de-allocate the memory it uses.

In other words, under ARC Free is an “instance reference centric” operation,
whereas DisposeOf is an “instance centric” operation. Free means, “I don’t care
what happens to the instance, I just don’t need it anymore.” DisposeOf means, “I
need this instance to internally clean itself up since it may be holding a non-memory
resource that needs to be released” (like a file handle, database handle, a socket, and
so on).

Another use for DisposeOf is to explicitly trigger proper cleanup and de-allocation
for complicated reference cycles. While the use of weak references (described in the
next section) makes things more clear and explicit, there may be situations where
an explicit trigger or notification is needed to “tell” other instances to drop their ref-
erence.

note A note about mixing pointers and objects. In traditional non-ARC Object Pascal code, you can
assign an object to a pointer, reuse the object variable for a different object, and later assign the
pointer back to the object variable. If you do the same under ARC, the object won’t be there any
more: as the object’s reference counts gets to zero (given the pointer doesn’t count as a reference
and doesn’t increase the reference count) this is destroyed.

Marco Cantù, Object Pascal Handbook

13: Objects and Memory - 363

Summary of Objects Creation and Destruction
under ARC and non-ARC Compilers

I know that reading the last few sections might have caused quite a bit of confusion.
The fact that Object Pascal supports two different memory models on different com-
pilers certainly makes things a little more complex, although in the real world
scenarios like the component ownership (covered in Chapter 17) and many other
common techniques help smooth out the developer's effort in managing memory in
Object Pascal applications.

To help understand the differences between the two models, I though it would be
helpful to show them compared in a table, as I've done below. For each common
operation, I explain the effect and any differences, separately for non-ARC and ARC
compilers.

Traditional Style ARC Style

Call Create
constructor

Allocates memory and executed
initialization code. Same if the
constructor has a different name,
of course, as this doesn't really
matter.

Same effect. Notice that the ini-
tial reference count is increased
when the newly created object
is assigned to a variable (tem-
porary or declared), not in the
constructor itself.

Assign to
another vari-
able or pass
as (standard)
value param-
eter

The two variables will simply refer
to the same object in memory. It
is up to you to avoid memory
leaks and dangling references.

Also two variables referring to a
single object , but the object
also has its reference count
increased. While the variables
are in scope, ARC keeps them
alive, managing the memory
automatically.

Pass as const
or reference
parameter

No significant difference, in terms
of memory management.

There is no increase/decrease
in the reference count, making
the code more efficient, if appli-
cable.

Call Destroy
destructor

Destroy should not be called
directly. Its effect is to execute the
finalization code of the object and
release its memory.

In the ARC scenario, Destroy
executes the objects finalization
code, while the memory relea-
seis a separate action.

Marco Cantù, Object Pascal Handbook

364 - 13: Objects and Memory

Traditional Style ARC Style

Call Free
method

Calling Free invokes the object's
Destroy destructor (unless the
reference to the object has previ-
ously been set to nil).

Calling Free assigns the refer-
ence to the object to nil. This
has the effect of reducing the
object's reference count. The
object will automatically be
destroyed if its reference count
is reduced to zero).

Call Dis-
poseOf
method

Same as calling Free. Forces the execution of the
destructor code, without delet-
ing the object or reducing the
reference count.

Assign refer-
ence to nil

Does nothing, meaning the object
is not destroyed in any way.

Reduces the reference count,
possibly destroying the object.

Call FreeAnd-
Nil
procedure

Does both operations of destroy-
ing the object (Free) and setting
the reference to nil (partially pro-
tecting from further operations).

Does the same as setting to nil
or calling Free (in effect the
same thing under ARC).

Weak References

Another very important concept for Automatic Reference Counting (ARC) is the role
of weak references. One issue with reference counting models, is that if two objects
refer to one another they form a circular reference, and their reference count will
basically never get to zero. Weak references offer a mechanism to break these
cycles, allowing you to define a reference that doesn't increase the reference count.

Suppose that two objects refer to each other using one of their fields, and an exter-
nal variable refers to the first. The reference count of the first object will be 2 (the
external variable, and the field of the second object): while the reference count of
the second object is 1 (the field of the first object). Figure 13.2 depicts this scenario.

Marco Cantù, Object Pascal Handbook

13: Objects and Memory - 365

Figure 13.2:
References among
objects can form cycles,
something weak
references account for.

Now, as the external variable goes out of scope, the two objects' reference count
remains 1, and they’ll remain in memory indefinitely. To solve this type of situation,
you should break the circular references, something far from simple, given that you
don’t know when to perform this operation (it should be performed when the last
external reference goes out of scope, a fact of which the objects have no knowledge).
The solution to this situation, and many similar scenarios, is to use a weak refer-
ence. As mentioned, a weak reference is a reference to an object that doesn’t
increase its reference count. Technical you define a weak reference by applying the
[weak] attribute to it.

note Attributes are an advanced Object Pascal language feature covered in Chapter 16. Suffice to say
that they are a way to add some runtime information about a symbol, so that external code can
determine how to handle it.

Given the previous scenario, if the reference from the second object back to the first
one is weak, as the external variable goes out of scope, both objects will be
destroyed.

Figure 13.3: The
references cycle in
Figure 13.2, broken
using a weak reference
(dotted line).

Let’s look at this simple situation in code:

type
 TMyComplexClass = class;

 TMySimpleClass = class
 private

Marco Cantù, Object Pascal Handbook

366 - 13: Objects and Memory

 [Weak] FOwnedBy: TMyComplexClass;
 public
 constructor Create();
 destructor Destroy (); override;
 procedure DoSomething(bRaise: Boolean = False);
 end;

 TMyComplexClass = class
 private
 fSimple: TMySimpleClass;
 public
 constructor Create();
 destructor Destroy (); override;
 class procedure CreateOnly;
 end;

Here the constructor of the “complex” class creates an object of the other class:

constructor TMyComplexClass.Create;
begin
 inherited Create;
 FSimple := TMySimpleClass.Create;
 FSimple.FOwnedBy := self;
end;

Remember that the FOwnedBy field is a weak reference, so it doesn’t increase the ref-
erence count of the object it refers to, in this case the current object (self). Given
this class structure, we can write:

class procedure TMyComplexClass.CreateOnly;
var
 MyComplex: TMyComplexClass;
begin
 MyComplex := TMyComplexClass.Create;
 MyComplex.fSimple.DoSomething;
end;

This will cause no memory leak, as long as the weak reference is properly used.

Weak References Are Managed

A very important element of the ARC model is that weak references are managed. In
other words, the system keep a list of the weak references in memory, and when an
object is destroyed it checks if there is a weak reference referring to it, and marks it
accordingly. This means weak references have a runtime cost, but on the other hand
doing the same cross checks manually in code would likely be even more expensive.

The good thing about having managed weak references, compared to traditional
ones, is that you can check if a reference is still valid or not (meaning the object it is
referring to has been destroyed). When you are using a weak reference, you
shouldn’t test if it nil. What you can do is to assign the weak reference to a strong

Marco Cantù, Object Pascal Handbook

13: Objects and Memory - 367

reference first (which introduces some checks behind the scenes), and then check
the strong reference value. As an example, given the FOwnedBy weak reference
above, you could write:

var
 TheOwner: TMyComplexClass; // strong reference alias
begin
 TheOwner := FOwnedBy;
 if TheOwner <> nil then
 TheOwner.ClassName; // safe to use
end;

Checking for Cycles

If you are in doubt whether a given set of cross references among a few objects can
cause a cycle, there is a little function that might help you figure out how your appli-
cation behaves. This is a function of the System.Classes unit and it is called
CheckForCycles:

procedure CheckForCycles(const Obj: TObject;
 const PostFoundCycle: TPostFoundCycleProc); overload;
procedure CheckForCycles(const Intf: IInterface;
 const PostFoundCycle: TPostFoundCycleProc); overload;

This is not a function you’d generally use in your final code, but only for testing pur-
poses during development and debugging. The second parameter of the procedure
is an anonymous method (see Chapter 14 for more information) receiving as param-
eter the object’s class, its memory address, and a stack with the objects in the cycle.
This is a rather basic example of its usage, based on the class described earlier after
removing the weak reference (with the weak reference, there is no cycle, of course):

var
 MyComplex: TMyComplexClass;
begin
 MyComplex := TMyComplexClass.Create;
 MyComplex.fSimple.DoSomething;
 CheckForCycles (myComplex,
 procedure (const ClassName: string; Reference: IntPtr;
 const Stack: TStack<IntPtr>)
 begin
 Log('Object ' + IntToHex (Reference, 8) +
 ' of class ' + ClassName + ' has a cycle');
 end)

 We'll have another look at weak references when discussing components ownership
in Chapter 17.

Marco Cantù, Object Pascal Handbook

368 - 13: Objects and Memory

The Unsafe Attribute

There are some very specific circumstances (for example, during the creation of an
instance) in which a function might return an object with a reference count set to
zero. In this case, in order to avoid the compiler deleting the object right away
(before it has a chance to be assigned to a variable, which would increase its refer-
ence count to 1), we have to mark the object as “unsafe”.

The implication here is that its reference count has to be temporarily ignored, to
make the code “safe”. This behavior is accomplished by using a new specific
attribute, [Unsafe], a feature you should need only in very specific circumstances.
This is the syntax:

var
 [Unsafe] Obj1: TObject;

[Result: Unsafe] function GetObject: TObject;

The use of this attribute can make sense when implementing construction patterns,
like the factory pattern, in general purpose libraries.

There is, however, also a more general scope for the unsafe attribute and unsafe ref-
erences under ARC compilers. With this attribute references behave basically as
traditional non-reference-counted references of the Delphi world. No increase or
decrease of the reference count happens when an unsafe reference is assigned an
object or goes out of scope. No check for zero references is performed. Just like with
a “good old” Delphi reference.

note Along the same line mixing unsafe and ARC references can get you in some tricky scenarios, more
or less like mixing interface and object references on the Windows compilers.

Does this mean developers should scrap ARC and go for the traditional model? To
me this does make sense in some very specific scenarios, in which another memory
management model is already in action. In general, ARC is a very powerful and
complete model I recommend understanding and embracing, rather than fighting.
Make sure you learn your options, and than make a decision, rather than taking a
shortcut to the scenario you know from the past.

Consider also that Delphi's RTL and FireMonkey libraries embrace and use ARC
and weak references on mobile.

Marco Cantù, Object Pascal Handbook

13: Objects and Memory - 369

The Unsafe Directive

In the System unit the attribute is replaced by a corresponding directive, unsafe,
because you cannot use the attribute before it is defined (later in the same unit).

An example of the use of this feature is the low-level InitInstance class function of
the TObject class, used to allocate the memory for an object, which is declared as:

type
 TObject = class
 public
 constructor Create;
 procedure Free;
 class function InitInstance(Instance: Pointer):
 TObject {$IFDEF AUTOREFCOUNT}unsafe{$ENDIF};

In the Object Pascal runtime library the usage of the unsafe directive (as shown in
the above code) is limited to the System unit. It should never be used elsewhere. The
[unsafe] attribute, instead, has some role in libraries and application code.

Behind Reference Counting

Although in most scenarios you should just adapt your code to the use of reference
counting, potentially adding weak references and the unsafe attribute as needed,
there are circumstances in which you have to directly allocate and manage the
memory for the objects, in totally custom ways.

In similar scenarios, the object won’t be properly managed in terms of reference
counting, and you might end up with an object you need to stay in memory while it
has no actual references. In such a rare case, you can force a change in reference
counting by calling two public virtual methods of the TObject class:

function __ObjAddRef: Integer; virtual;
function __ObjRelease: Integer; virtual;

Both methods return the reference count after the operation (in a way correspond-
ing to the similarly named functions of the base IInterface interface).

note The two functions above implement the core of the reference counting code in Delphi, triggered
automatically by the compiler as needed. When you assign an object to a new variable, the over-
head is a single call to a function in the virtual method table, which in turn increments a field of
the object itself. This is much faster than alternative implementations, including Apple’s current
implementation of ARC for Objective-C.

Marco Cantù, Object Pascal Handbook

370 - 13: Objects and Memory

A potential scenario for using these methods is when you have a block of memory
(possibly allocated by an external API function call) that you want to treat as, or cast
to, an object type.

Another example, taken from the RTL, is when you copy the data of an object using
a pointer (the code has IFDEFs, here is the ARC version):

class function TInterlocked.CompareExchange(
 var Target: TObject; Value, Comparand: TObject): TObject;
begin
 if Value <> nil then
 Value.__ObjAddRef;

 Result := TObject(CompareExchange(
 Pointer(Target), Pointer(Value), Pointer(Comparand)));

 if (Value <> nil) and
 (Pointer(Result) <> Pointer(Comparand)) then
 Value.__ObjRelease;
end;

Mixing Interfaces and Classes Under ARC

We have seen in Chapter 11 that it is really not advisable to mix objects references
and interface references to a single object in memory, as the two models can end up
interfering with each other. When the interface reference count goes to zero, in fact,
the object is released even if there are pending object references.

This is only true for the non-ARC compilers though. Under ARC, both object and
interface references share the same reference counting mechanism, so even if there
are no more interface references, the object references keep the count active and
correct. This makes using interfaces in Object Pascal even easier on the ARC-
enabled platforms.

Tracking and Checking Memory

We have seen in this chapter the foundations of memory management in Object
Pascal. In most cases, just applying the rules highlighted here will suffice to keep
your programs stable, avoid excessive memory usage, and basically let you forget
about memory management. There are some further best practices for writing
robust applications covered later in this chapter.

Marco Cantù, Object Pascal Handbook

13: Objects and Memory - 371

In this section I'm focusing on the techniques you can use to track memory usage,
monitor anomalous situations, and find memory leaks. This is important knowledge
for a developer, even if it isn't really part of the language per se, but more of the run-
time support. Also, the implementation of the memory manager depends on the
target platform and operating system, and you can even plug-in a custom memory
manager in an Object Pascal application (not that this is a common though).

Notice that all of the discussion related with tracking memory status, memory man-
agers, leak detection relate only to heap memory. The stack and the global memory
are managed differently and you basically have no power to intervene, but these are
also memory areas that rarely cause any trouble.

Memory Status

What about tracking heap memory status? The RTL offers a couple of handy func-
tions, GetMemoryManagerState and GetMemoryMap. While the memory manager state
is an indication of the number of allocated blocks of various sizes, the heap map is
quite nice as it depicts the memory status of the application at the system level. You
can examine the actual status of each following memory block by writing code like:

 for I := low(aMemoryMap) to high(aMemoryMap) do
 begin
 case AMemoryMap[I] of
 csUnallocated: ...
 csAllocated: ...
 csReserved: ...
 csSysAllocated: ...
 csSysReserved: ...
 end;
 end;

FastMM4

On the Windows platform, the current Object Pascal memory managed is called
FastMM4 and was developed as an open source project mainly by Pierre La Riche, a
Delphi programmer from South Africa. FastMM4 optimizes the allocation of mem-
ory, speeding it up and freeing more RAM for subsequent use. FastMM4 is capable
of doing extensive memory checks on effective memory clean-up, on incorrect use
of deleted objects, including interface based access to that data, on memory over-
writes and on buffer overruns. It can also provide some feedback on left-over
objects, helping you track memory leaks.

Marco Cantù, Object Pascal Handbook

372 - 13: Objects and Memory

Actually some of the more advanced features of FastMM4 are available only in the
full version of the library (covered in the section “Buffer Overruns in the Full
FastMM4”), not in the version that is included in the standard RTL. This is why if
you want to have the capabilities of the full version, you have to download its full
source code from:

http://fastmm.sourceforge.net

note If you do download the full version of FastMM4 (but also if you use the one already in the RTL)
you should consider making a donation to the author, who built this terrific piece of software by
investing a large amount of his time.

Tracking Leaks and Other Global Settings

The RTL version of the FastMM4 can be tuned using global settings in the System
unit. Notice that while the relevant global declarations are in the System unit, the
actual memory manager is implemented in the getmem.inc RTL source code file.
Again, this is active by default only for Windows applications, not for other operat-
ing systems, that use their platform native memory manager.

The easier-to-use setting is the ReportMemoryLeaksOnShutdown global variable,
which allows you to easily track a memory leak. You need to turn it on at the begin-
ning of the program execution, and when the program terminates it will tell you if
there is any memory leak in your code (or in any of the libraries you are using).

note More advanced settings of the memory manager include the NeverSleepOnMMThreadContention
global variable for multi-threaded allocations; the functions GetMinimumBlockAlignment and
SetMinimumBlockAlignment, which can speed up some SSE operation to the expense of using
more memory; the ability to register an expected memory leak by calling the global procedure
RegisterExpectedMemoryLeak,

To demonstrate standard memory leak reporting and registration, I've written the
simple LeakTest application project. It has a button with an OnClick event handler
(badly) written as follows:

var
 p: Pointer;
begin
 GetMem (p, 100); // leak!
end;

This code allocates 100 bytes that are lost... or leaked. If you run the LeakTest pro-
gram while the IDE is running and press the first button once, as you close the
program you'll get a message like the one in Figure 13.4.

Marco Cantù, Object Pascal Handbook

13: Objects and Memory - 373

Figure 13.4: The
memory leak reported
by the memory
manager on Windows
upon program
termination

The other “leak” of the program is caused by creating and leaving in memory a
TButton, but as this object includes many sub-elements, the leak report becomes
more complex. Still, we do have some limited information about the leak itself.

The program also allocates some memory for a global pointer that's never going to
be freed, but by registering this potential leak as expected, it won't get reported:

procedure TFormLeakTest.FormCreate(Sender: TObject);
begin
 GetMem (GlobalPointer, 200);
 RegisterExpectedMemoryLeak(GlobalPointer);
end;

Again, this basic leak reporting is only available by default only on the Windows
platform, where FastMM4 is actually used by default.

Buffer Overruns in the Full FastMM4

This is a rather advanced topic, and one that is specific to the Windows
platform, so I'd recommend only the most experienced developers read
this section.

If you want to have more control over leak reporting (like activating file-based log-
ging), fine tune the allocation strategy and use memory checks provided by
FastMM4, you need to download the full version. This consists of the FastMM4.pas
file plus the configuration file FastMM4Options.inc.

It is the latter file that you need to edit to fine tune the settings, simply by comment-
ing and uncommenting a large number of directives. By convention, this is done by
placing a period before the $DEFINE statement, turning it into a plain comment, as
in the first of these two lines taken from the include file:

{.$DEFINE Align16Bytes} // comment

Marco Cantù, Object Pascal Handbook

374 - 13: Objects and Memory

{$DEFINE UseCustomFixedSizeMoveRoutines} // active setting

For this demo I've turned on the following relevant settings, reported here to give
you an idea of the kind of available defines:

{$DEFINE FullDebugMode}
{$DEFINE LogErrorsToFile}
{$DEFINE EnableMemoryLeakReporting}
{$DEFINE HideExpectedLeaksRegisteredByPointer}
{$DEFINE RequireDebuggerPresenceForLeakReporting}

The test program (in the folder FastMMCode, which also includes the full source of
the version of FastMM4 that I used, for your convenience) activates the custom ver-
sion of the memory manager in the project source code file, by setting it as the first
unit:

program FastMMCode;

uses
 FastMM4 in 'FastMM4.pas',
 Forms,
 FastMMForm in 'FastMMForm.pas'; {Form1}

You'll also need a local copy of the FastMM_FullDebugMode.dll file to make it work.
This demo program causes a buffer overrun by getting more text that it can fit in the
local buffer, as Length(Caption) is larger than the 5 characters provided:

procedure TForm1.Button2Click(Sender: TObject);
var
 pch1: PChar;
begin
 GetMem (pch1, 5);
 GetWindowText(Handle, pch1, Length(Caption));
 ShowMessage (pch1);
 FreeMem (pch1);
end;

The memory manager allocates extra bytes at the beginning and at the end of each
memory block with special values, and checks for those values when you free each
memory block. This is why you get the error on the FreeMem call. As you press the
button (in the debugger) you'll see a very long error message, which is also logged to
the file:

FastMMCode_MemoryManager_EventLog.txt

This is the output of the overrun error, with stack traces at the time of the allocation
and free operations, plus the current stack trace and (mostly omitted) memory
dump:

FastMM has detected an error during a FreeMem operation. The block
footer has been corrupted.

The block size is: 5

Marco Cantù, Object Pascal Handbook

13: Objects and Memory - 375

Stack trace of when this block was allocated (return addresses):
40305E [System][System.@GetMem]
44091A [Controls][Controls.TControl.Click]
44431B [Controls][Controls.TWinControl.WndProc]
42D959 [StdCtrls][StdCtrls.TButtonControl.WndProc]
44446C [Controls][Controls.DoControlMsg]
44431B [Controls][Controls.TWinControl.WndProc]
45498A [Forms][Forms.TCustomForm.WndProc]
443A43 [Controls][Controls.TWinControl.MainWndProc]
41F31A [Classes][Classes.StdWndProc]
76281A10 [GetMessageW]

The block is currently used for an object of class: Unknown

The allocation number is: 381

Stack trace of when the block was previously freed (return addresses):
40307A [System][System.@FreeMem]
42DB8A [StdCtrls][StdCtrls.TButton.CreateWnd]
443863 [Controls][Controls.TWinControl.UpdateShowing]
44392B [Controls][Controls.TWinControl.UpdateControlState]
44431B [Controls][Controls.TWinControl.WndProc]
45498A [Forms][Forms.TCustomForm.WndProc]
44009F [Controls][Controls.TControl.Perform]
43ECDF [Controls][Controls.TControl.SetVisible]
45F770
76743833 [BaseThreadInitThunk]

The current stack trace leading to this error (return addresses):
40307A [System][System.@FreeMem]
44091A [Controls][Controls.TControl.Click]
44431B [Controls][Controls.TWinControl.WndProc]
42D959 [StdCtrls][StdCtrls.TButtonControl.WndProc]
44446C [Controls][Controls.DoControlMsg]
44431B [Controls][Controls.TWinControl.WndProc]
45498A [Forms][Forms.TCustomForm.WndProc]
443A43 [Controls][Controls.TWinControl.MainWndProc]
41F31A [Classes][Classes.StdWndProc]
76281A10 [GetMessageW]

Current memory dump of 256 bytes starting at pointer address 133DEF8:
46 61 73 74 4D 4D 43 6F 64 [... omitted...]

Not that this is extremely obvious, but it should provide enough information to get
you started on chasing down the bug. Notice that without these settings in the mem-
ory manager, you'll basically won't see any error and the program keeps running...
although you might experience random bugs in case the buffer overrun affects an
area of memory in which something else is stored. At that point you can get some
weird and very hard to track errors.

Marco Cantù, Object Pascal Handbook

376 - 13: Objects and Memory

As an example, I once saw the partial overwriting of the initial portion of the data of
an object, where the class reference is stored. Through this memory corruption the
class became undefined and each and every call to one of its virtual functions would
badly crash... something very hard to relate to a memory writing operation in a
totally different area of the program.

Memory Management on Platforms Other
than Windows

Given how memory management works Object Pascal ARC-enabled compilers, it is
worth considering some of the options you have in making sure everything is under
control. Before we proceed, it is important to notice that on non-Windows platforms
Delphi doesn’t use the FastMM4 memory manager, so setting the ReportMemo-
ryLeaksOnShutdown global flag to check for memory leaks when the program closes
is useless. There is also another reason, which is there isn't generally a way to close
an application on mobile, given apps stay in memory until forcibly removed by the
user or the operating system.

On the OS X, iOS and Android platforms, the Object Pascal RTL directly calls the
malloc and free functions of the native libc library. One way to monitor memory
usage on this platform is to reply on external platform tools. For example on iOS
(and OS X) you can use Apple’s Instruments tool, which is a complete tracking sys-
tem monitoring all aspects of your applications running on a physical device.

note You can find a very detailed video by Daniel Magin and Daniel Wolf covering this tool from a Del-
phi perspective at http://www.danielmagin.de/blog/index.php/2013/03/apple-
instruments-and-delphi-for-ios-movie/.

Tracking Per-Class Allocations

Finally, there is an Object Pascal specific approach for tracking for a specific class
rather than memory management at large. The memory allocation for an object, in
fact, takes place by calling the NewInstance virtual class method, while the cleanup
is done by the FreeInstance virtual method. These are virtual methods you can
override in a specific class to customize the specific memory allocation strategy.

The advantage is you can do this regardless of the constructors (as you can have
more than one) and the destructor, clearly separating the memory tracking code
from the standard object initialization and finalization code.

Marco Cantù, Object Pascal Handbook

13: Objects and Memory - 377

While that is a rather extreme corner case (probably only worth doing for some
large memory structures) you can override these methods to count the number of
objects of a given class that are created and destroyed, calculate the number of
active instances, and at the end check that the count goes to zero as expected.

Writing Robust Applications

In this chapter and in many previous chapters of this section, I have covered quite a
few techniques focused on writing robust applications and properly managing
memory allocation and deallocation.

In this final section of a chapter focused on memory management, I decided to list a
few slightly more advanced topics, that augment the earlier coverage. Even if using
try-finally blocks and calling destructors have already been covered, the scenarios
highlighted here are slightly more complex and involve using multiple language fea-
tures together.

This is not really an advanced section, but something all Object Pascal developers
should really master to be able to write robust applications. Only the last sub-sec-
tion on pointers and object references is definitely more advanced in scope as it
delves into the internal in-memory structure of an object and a class reference.

Constructors, Destructors, and Exceptions

Constructors and destructors can often be a source of problems within applications.
Virtual constructors must invariably call their base class constructor first. Destruc-
tors should generally call their inherited last, instead.

note To follow what is good coding practice, you should generally add a base class constructor call in
every constructor of your Object Pascal code, even if this is not compulsory and the extra call
might be useless (like when calling TObject.Create).

In this section I want to specifically focus on what happens when a constructor fails
in a classic scenario like:

MyObj := TMyClass.Create;
try
 MyObj.DoSomething;
finally
 MyObj.Free;

Marco Cantù, Object Pascal Handbook

378 - 13: Objects and Memory

end;

If the object is created and assigned to the MyObj variable, the finally block takes
care of destroying it. But if the Create call raises an exception, the try-finally
block is not entered (and this is correct!). When a constructor raises an exception,
the corresponding destructor code is automatically executed on what might be a
partially initialized object. If the constructor creates two sub-objects, for example,
those need to be cleared invoking the matching destructor. However this can lead to
potential trouble if in the destructor you presume the object was fully initialized..

This is not simple to understand in theory, so let's look to a practical demo in code.
The SafeCode application project contains a class with a constructor and a destruc-
tor that will be generally correct... unless the constructor itself fails:

type
 TUnsafeDesctructor = class
 private
 aList: TList;
 public
 constructor Create (positiveNumber: Integer);
 destructor Destroy; override;
 end;

constructor TUnsafeDesctructor.Create(positiveNumber: Integer);
begin
 inherited Create;

 if positiveNumber <= 0 then
 raise Exception.Create ('Not a positive number');
 aList := TList.Create;
end;

destructor TUnsafeDesctructor.Destroy;
begin
 aList.Clear;
 aList.Free;
 inherited;
end;

The problem is that in cases where the object has been fully created, the destructor
works correctly, but if it is executed when the aList field is still set to nil, the Clear
call will raise an “Access violation” exception.

The safe way to write the same code is the following:

destructor TUnsafeDesctructor.Destroy;
begin
 if assigned (aList) then
 aList.Clear;
 aList.Free;
 inherited;
end;

Marco Cantù, Object Pascal Handbook

13: Objects and Memory - 379

And the moral of the story, again, is never to take for granted in a destructor that
the corresponding constructor has fully initialized the object. You can make this
assumption for any other method but not for the destructor.

Nested Finally blocks

Finally blocks are probably the most important and common technique to make
your programs safe. I don’t think this is an advanced topic, but do you use finally all
over the place or not? And do you use it properly in border cases, such as nested
operations, or do you combine multiple finalizations in a single finally block? This is
a far from perfect code example:

procedure TForm1.btnTryFClick(Sender: TObject);
var
 a1, a2: TAClass;
begin
 a1 := TAClass.Create;
 a2 := TAClass.Create;
 try
 a1.whatever := 'one';
 a2.whatever := 'two';
 finally
 a2.Free;
 a1.Free;
 end;
end;

This is a safer version of the same code (again from the SafeCode application
project):

procedure TForm1.btnTryFClick(Sender: TObject);
var
 a1, a2: TAClass;
begin
 a1 := TAClass.Create;
 try
 a2 := TAClass.Create;
 try
 a1.whatever := 'one';
 a2.whatever := 'two';
 finally
 a2.Free;
 end;
 finally
 a1.Free;
 end;
end;

Marco Cantù, Object Pascal Handbook

380 - 13: Objects and Memory

Dynamic Type Checking

Dynamic casting operations between types in general, and class types in particular
is another possible source of pitfalls. Particularly if you don’t use the is and as oper-
ators and simply do hard casts. Every direct typecast is, in fact, a potential source of
error (unless it follows an is check).

Typecasting from object to pointers, to and from class references, from objects to
interfaces, to and from strings is potentially very dangerous, but in some special cir-
cumstances hard to avoid. For example, you might want to save the object reference
in the Tag property of a component. Another case is, when you save objects in a list
of pointers, an old-fashioned TList (rather than a type-safe generic list, covered in
the next chapter). This is a quite stupid example:

procedure TForm1.btnCastClick(Sender: TObject);
var
 list: TList;
begin
 list := TList.Create;
 try
 list.Add(Pointer(Sender));
 list.Add(Pointer (23422));
 // direct cast
 TButton(list[0]).Caption := 'ouch';
 TButton(list[1]).Caption := 'ouch';
 finally
 list.Free;
 end;
end;

Running this code will generally cause an access violation.

note I wrote generally because when you access memory at random you never know the actual effect.
At times programs simply overwrite memory without causing an immediate error... but you'll have
a hard time later on figuring out why some other data got corrupted.

You should avoid similar situations whenever possible, but if you happen to have no
alternative what can you do to fix this code? The natural approach would be to use
either an as safe cast or an is type check, like in the following snippets:

 // as cast
 (TObject(list[0]) as TButton).Caption := 'ouch';
 (TObject(list[1]) as TButton).Caption := 'ouch';

 // is cast
 if TObject(list[0]) is TButton then
 TButton(list[0]).Caption := 'ouch';
 if TObject(list[1]) is TButton then
 TButton(list[1]).Caption := 'ouch';

Marco Cantù, Object Pascal Handbook

13: Objects and Memory - 381

However, this is not the solution, you'll continue to get Access violations. The prob-
lem is that both is and as end up calling TObject.InheritsFrom, a difficult
operation to perform on a number!

The solution? The real solution is to avoid similar situations in the first place (that
type of code honestly makes little sense), using a TObjectList or some other safe
technique (again, see the next chapter for generic container classes). If you are
really in for low-level hacks and like playing with pointers, you can try to figure out
whether a given “numeric value” is really a reference to an object or not. This is not
a trivial operation, though. There is an interesting side to it, which I'm taking as the
excuse for this demo to explain you the internal structure of an object... and of a
class reference.

Is this Pointer an Object Reference?

This section explains the internal structure of objects and class references,
and goes way beyond the level of the discussion in most of this book. Still, it
can provide the more experts readers with some interesting insights, so I
decided to keep this material that I wrote in the past for an advanced
paper on memory management. Notice also that the specific implementa-
tion below is really Windows specific, in terms of memory checks.

There are times when you have pointers around (a pointer is just a numeric value
referring to the physical memory location of some data). These pointers might actu-
ally be references to objects, and you generally know when they are and use them as
such. But every time you do a low-level cast you are really on the verge of screwing
up an entire program. There are techniques, to make this type of pointer manage-
ment a little safer, even if not 100 percent guarantee them.

The starting point you might want to consider before working with a pointer is
whether it is actually a legal pointer or not. The Assigned function only checks
whether a pointer is not nil, which doesn't help in this case. However, the little-
known FindHInstance function of the Object Pascal RTL (in the System unit, avail-
able on the Windows platform) returns the base address of the heap block including
the object passed as parameter, or zero if the pointer refers to an invalid page (pre-
venting rather infrequent but extremely hard to track memory page errors). If you
take a number almost at random, it is likely it won't refer to a valid memory page.

This is a good starting point, but we can do better, as this won't help if the value is a
string reference or any other valid pointer and not an object reference. Now how do
you know if a pointer is actually a reference to an object? I’ve come up with the fol-
lowing empirical test. The first 4 bytes of an object are the pointer to its class. If you

Marco Cantù, Object Pascal Handbook

382 - 13: Objects and Memory

consider the internal data structure of a class reference, it has in its vmtSelfPtr
position a pointer to itself. This is roughly depicted in the image in Figure 13.5.

Figure 13.5: An
approximate
representation of the
internal structure of
objects and class
references.

In other words, by dereferencing the value at a memory location vmtSelfPtr bytes
from the class reference pointer (this is a negative offset, lower in memory) you
should get the same class reference pointer again. Moreover, in the internal data
structure of a class reference, you can have access to the instance size information
(at the vmtInstanceSize position) and see if there is a reasonable number in there.
Here is the actual code:

function IsPointerToObject (Address: Pointer): Boolean;
var
 classPointer, vmtPointer: PChar;
 instsize: Integer;
begin
 Result := False;
 if (FindHInstance (Address) > 0) then
 begin
 vmtpointer := pchar(Address^);
 classpointer := vmtpointer + vmtSelfPtr;
 if Assigned (vmtpointer) and
 (FindHInstance (vmtpointer) > 0) then
 begin
 instsize := (Pinteger(
 vmtpointer + vmtInstanceSize))^;
 // check self pointer and "reasonable" instance size
 if (pointer(pointer(classpointer)^) =
 pointer(vmtpointer)) and
 (instsize > 0) and (instsize < 10000) then
 Result := True;
 end;
 end;
end;

Having this function at hand, in the previous SafeCode application project we can
add a pointer-to-object check before making a safe cast:

 if IsPointerToObject (list[0]) then

Marco Cantù, Object Pascal Handbook

13: Objects and Memory - 383

 (TObject(list[0]) as TButton).Caption := 'ouch';
 if IsPointerToObject (list[1]) then
 (TObject(list[1]) as TButton).Caption := 'ouch';

The same idea can also be applied directly to class references, also for implementing
safe-casts among them. Again, it is best to try to avoid similar problems in the first
place by writing safer and cleaner code, but in case you can't avoid it this function
might come in handy. In any case, this section should have explained a little of the
internals of these system data structures.

Marco Cantù, Object Pascal Handbook

384 - 13: Objects and Memory

Marco Cantù, Object Pascal Handbook

Part III: Advanced Features - 385

part iii: advanced

features

Now that we've delved into the language foundations and into the object-oriented
programming paradigm, it is time to discover some of the latest and more advanced
features of the Object Pascal language. Generics, anonymous methods, and reflec-
tion open up to developing code using new paradigms that extend object-oriented
programming in significant ways.

Some of these more advanced language features, in fact, let developers embrace
new ways of writing code, offering even more type and code abstractions, and allow-
ing for a more dynamic approach to coding using reflection to its fullest potential.

The last part of the section will expand on these language features by offering an
overview of core run-time library elements, which are so core to the Object Pascal
development model to make the distinction between language and library quite
blurred. We'll inspect, for example, the TObject class that, as we saw earlier, is the
base class of all classes you write: far to prominent a role to be confined to a library
implementation detail.

Marco Cantù, Object Pascal Handbook

386 - Part III: Advanced Features

Chapters of Part III

Chapter 14: Generics

Chapter 15: Anonymous Methods

Chapter 16: Reflection and Attributes

Chapter 17: The TObject Class

Chapter 18: The Run Time Library

Marco Cantù, Object Pascal Handbook

14: Generics - 387

14: generics

The strong type checking provided by Object Pascal is useful for improving the cor-
rectness of the code, a topic I've stressed a lot in this book. Strong type checking,
though, can also be a nuisance, as you might want to write a procedure or a class
that can act on different data types. This issue is addressed by a feature of the
Object Pascal language, also available in similar languages like C# and Java, called
generics.

The concept of generic or template classes comes from the C++ language. This is
what I wrote in 1994 in a book about C++:

You can declare a class without specifying the type of one or more data
members: this operation can be delayed until an object of that class is
actually declared. Similarly, you can define a function without specifying
the type of one or more of its parameters until the function is called.

note The book this text is extracted from is “Borland C++ 4.0 Object-Oriented Programming”, written
by me with Steve Tendon in the early 90ies.

This chapter delves into the topic, starting with the foundations but also covering
some advanced usage scenarios, and even indicating how generics can even be
applied to standard visual programming.

Marco Cantù, Object Pascal Handbook

388 - 14: Generics

Generic Key-Value Pairs

As a first example of a generic class, I've implemented a key-value pair data struc-
ture. The first code snippet below shows the data structure written in a traditional
fashion, with an object used to hold the value:

type
 TKeyValue = class
 private
 FKey: string;
 FValue: TObject;
 procedure SetKey(const Value: string);
 procedure SetValue(const Value: TObject);
 public
 property Key: string read FKey write SetKey;
 property Value: TObject read FValue write SetValue;
 end;

To use this class you can create an object, set its key and value, and use it, as in the
following snippets of various methods of the main form of the KeyValueClassic
application project:

// FormCreate
kv := TKeyValue.Create;

// Button1Click
kv.Key := 'mykey';
kv.Value := Sender;

// Button2Click
kv.Value := self; // the form

// Button3Click
ShowMessage('[' + kv.Key +',' + kv.Value.ClassName + ']');

What if you need a similar class, holding an Integer rather than an object? Well,
either you make a very unnatural (and dangerous) type cast, or you create a new and
separate class to hold a string key with a numeric value. Although copy and paste of
the original class might sound a solution, you end up with two copies for a very simi-
lar piece of code, you are going against good programming principles... and you'll
have to update with new features or correct the same bugs two, or three or twenty
times.

Generics make it possible to use a much broader definition for the value, writing a
single generic class. Once you instantiate the key-value generic class, it becomes a
specific class, tied to a given data type. So you still end up with two, or three, or
twenty classes compiled into your application, but you have a single source code
definition for all of them, still replying on proper string type checking and without a

Marco Cantù, Object Pascal Handbook

14: Generics - 389

runtime overhead. But I'm getting ahead of myself: let's start with the syntax used to
define the generic class:

type
 TKeyValue<T> = class
 private
 FKey: string;
 FValue: T;
 procedure SetKey(const Value: string);
 procedure SetValue(const Value: T);
 public
 property Key: string read FKey write SetKey;
 property Value: T read FValue write SetValue;
 end;

In this class definition, there is one unspecified type, indicated by the placeholder T,
placed within angle brackets. The symbol T is frequently used by convention, but as
far as the compiler is concerned you can use just any symbol you like. Using T gener-
ally makes the code more readable when the generic class uses only one parametric
type; in case the class needs multiple parametric types it is common to name them
according to their actual role, rather than using a sequence of letters (T, U, V) as it
happened in C++ during the early days.

note “T” has been the standard name, or placeholder, for a generic type since the days the C++ lan-
guage introduced templates in the early 1990s. Depending on the authors, the “T” stands for either
“Type” or “Template type”.

The generic TKeyValue<T> class uses the unspecified type as the type of one of its
two fields, the property value, and the setter method parameter. The methods are
defined as usual, but notice that regardless of the fact they have to do with the
generic type, their definition contains the complete name of the class, including the
generic type:

procedure TKeyValue<T>.SetKey(const Value: string);
begin
 FKey := Value;
end;

procedure TKeyValue<T>.SetValue(const Value: T);
begin
 FValue := Value;
end;

To use the class, instead, you have to fully qualify it, providing the actual type of the
generic type. For example, you can now declare a key-value object hosting buttons
as values by writing:

kv: TKeyValue<TButton>;

Marco Cantù, Object Pascal Handbook

390 - 14: Generics

The full name is required also when creating an instance, because this is the actual
type name (while the generic, uninstantiated type name is like a type construction
mechanism).

Using a specific type of the value of the key-value pair makes the code much more
robust, as you can now only add TButton (or derived) objects to the key-value pair
and can use the various methods of the extracted object. These are some snippets
from the main form of the KeyValueGeneric application project:

// FormCreate
kv := TKeyValue<TButton>.Create;

// Button1Click
kv.Key := 'mykey';
kv.Value := Sender as TButton;

// Button2Click
kv.Value := Sender as TButton; // was "self"

// Button3Click
ShowMessage ('[' + kv.Key + ',' + kv.Value.Name + ']');

When assigning a generic object in the previous version of the code we could add
either a button or a form, now we can use only button, a rule enforced by the com-
piler. Likewise, rather than a generic kv.Value.ClassName in the output we can use
the component Name, or any other property of the TButton class.

Of course, we can also mimic the original program by declaring the key-value pair
with an object type, like:

kvo: TKeyValue<TObject>;

In this version of the generic key-value pair class, we can add any object as value.
However, we won't be able to do much on the extracted objects, unless we cast them
to a more specific type. To find a good balance, you might want to go for something
in between specific buttons and any object, requesting the value to be a component:

kvc: TKeyValue<TComponent>;

You can see corresponding code snippets in the same KeyValueGeneric application
project. Finally, we can also create an instance of the generic key-value pair class
that doesn't store object values, but rather plain integers:

var
 kvi: TKeyValue<Integer>;
begin
 kvi := TKeyValue<Integer>.Create;
 try
 kvi.Key := 'object';
 kvi.Value := 100;
 kvi.Value := Left;
 ShowMessage ('[' + kvi.Key + ',' +

Marco Cantù, Object Pascal Handbook

14: Generics - 391

 IntToStr (kvi.Value) + ']');
 finally
 kvi.Free;
 end;

Type Rules on Generics

When you declare an instance of a generic type, this type gets a specific version,
which is enforced by the compiler in all subsequent operations. So if you have a
generic class like:

type
 TSimpleGeneric<T> = class
 Value: T;
 end;

as you declare a specific object with a given type, you cannot assign a different type
to the Value field. Given the following two objects, some of the assignments below
(part of the TypeCompRules application project) are incorrect:

var
 sg1: TSimpleGeneric<string>;
 sg2: TSimpleGeneric<Integer>;
begin
 sg1 := TSimpleGeneric<string>.Create;
 sg2 := TSimpleGeneric<Integer>.Create;

 sg1.Value := 'foo';
 sg1.Value := 10; // Error
 // E2010 Incompatible types: 'string' and 'Integer'

 sg2.Value := 'foo'; // Error
 // E2010 Incompatible types: 'Integer' and 'string'
 sg2.Value := 10;

Once you define a specific type in the generic declaration, this is enforced by the
compiler, as you should expect from a strongly-typed language like Object Pascal.
Type checking is also in place for generic objects as a whole. As you specify the
generic parameter for an object, you cannot assign to it a similar generic type based
on a different and incompatible type instance. If this seems confusing, an example
should help clarifying:

sg1 := TSimpleGeneric<Integer>.Create; // Error
// E2010 Incompatible types:
// 'TSimpleGeneric<System.string>'
// and 'TSimpleGeneric<System.Integer>'

Marco Cantù, Object Pascal Handbook

392 - 14: Generics

As we'll see in the section “Generic Types Compatibility Rules” in this peculiar case
the type compatibility rule is by structure and not by type name. You cannot assign a
different and incompatible type to a generic type once it has been declared.

Generics in Object Pascal

In the previous example we have seen how you can define and use a generic class in
Object Pascal. I decided to introduce this feature with an example before delving
into the technicalities, which are quite complex and very important at the same
time. After covering generics from a language perspective we'll get back to more
examples, including the use and definition of generic container classes, one of the
main uses of this technique in the language.

We have seen that when you define a class you can add in an extra “parameter”
within angle brackets to hold the place of a type to be provided later:

type
 TMyClass<T> = class
 ...
 end;

The generic type can be used as the type of a field (as I did in the previous example),
as the type of a property, as the type of a parameter or return value of a function,
and more. Notice that it is not compulsory to use the type for a local field (or array),
as there are cases in which the generic type is used only as a result, a parameter, or
is not used in the declaration of the class, but only in the definition of some of its
methods.

This form of extended or generic type declaration is not only available for classes
but also for records (that as I covered in Chapter 5, can also have methods, proper-
ties, and overloaded operators). A generic class can also have multiple
parameterized types, as in following case in which you can specify an input parame-
ter and a return value of a different type for a method:

type
 TPWGeneric<TInput,TReturn> = class
 public
 function AnyFunction (Value: TInput): TReturn;
 end;

The implementation of generics in Object Pascal, like in other static languages is not
based on runtime support. It is handled by the compiler and the linker, leaving
almost nothing to the runtime mechanism. Unlike virtual function calls, which are
bound at runtime, generic class methods are generated once for each generic type

Marco Cantù, Object Pascal Handbook

14: Generics - 393

you instantiate, and are generated at compile time! We'll see the possible drawbacks
of this approach, but on the positive side it implies that generic classes are as effi-
cient as plain classes, or even more efficient as the need for runtime checks is
reduced. Before we look at some of the internals, though, let me focus on some very
significant rules which break the traditional Pascal language type compatibility
rules.

Generic Types Compatibility Rules

In traditional Pascal and in Object Pascal the core type compatibility rules are based
on type name equivalence. In other words, two variables are type compatible only if
their type name is the same, regardless of the actual data structure to which they
refer.

This is a classic example of type incompatibility with static arrays (part of the Type-
CompRules application project):

type
 TArrayOf10 = array [1..10] of Integer;

procedure TForm30.Button1Click(Sender: TObject);
var
 array1: TArrayOf10;
 array2: TArrayOf10
 array3, array4: array [1..10] of Integer;
begin
 array1 := array2;
 array2 := array3; // Error
 // E2010 Incompatible types: 'TArrayOf10' and 'Array'

 array3 := array4;
 array4 := array1; // Error
 // E2010 Incompatible types: 'Array' and 'TArrayOf10'
end;

As you can see in the code above, all four arrays are structurally identical. However,
the compiler will let you assign only those that are type compatible, either because
their type has the same explicit name (like TArrayOf10) or because they have the
same implicit (or compiler generated, type name, as the two arrays declared in a
single statement.

This type compatibility rule has very limited exceptions, like those related to derived
classes. Another exception to the rule, and a significant one, is type compatibility for
generic types, which is probably also used internally by the compiler to determine
when to generate a new type from the generic one, with all of its methods.

Marco Cantù, Object Pascal Handbook

394 - 14: Generics

The new rule states that generic types are compatible when they share the same
generic class definition and instance type, regardless of the type name associated
with this definition. In other words, the full name of the generic type instance is a
combination of the generic type and the instance type.

In the following example the four variables are all type compatible:

type
 TGenericArray<T> = class
 anArray: array [1..10] of T;
 end;

 TIntGenericArray = TGenericArray<Integer>;

procedure TForm30.Button2Click(Sender: TObject);
var
 array1: TIntGenericArray;
 array2: TIntGenericArray;
 array3, array4: TGenericArray<Integer>;
begin
 array1 := TIntGenericArray.Create;
 array2 := array1;
 array3 := array2;
 array4 := array3;
 array1 := array4;
end;

Generic Methods for Standard Classes

While the use of generics types to define classes is likely the most common scenario,
generic types can also be used in non-generic classes. In other words, a regular class
can have a generic method. In this case, you don't specific a specific type for the
generic placeholder when you create an instance of the class, but also when you
invoke the method. Here is an example class with a generic method from the Gener-
icMethod application project:

type
 TGenericFunction = class
 public
 function WithParam <T> (t1: T): string;
 end;

note When I first wrote this code, probably with a reminiscence of my C++ days, I wrote the parameter
as (t: T). Needless to say in a case insensitive language like Object Pascal, this is not a great idea.
The compiler will actually let it go but issue errors every time you refer to the generic type T.

Marco Cantù, Object Pascal Handbook

14: Generics - 395

There isn't much you can do inside a similar class method (at least unless you use
constraints, covered later in this chapter), so I wrote some code using special
generic type functions (again covered later) and a special function to convert the
type to a string, which it is not relevant to discuss here:

function TGenericFunction.WithParam<T>(t1: T): string;
begin
 Result := GetTypeName (TypeInfo (T));
end;

As you can see this method doesn't even use the actual value passed as parameter,
but only grabs some type information. Again, not knowing the type of t1 at all
makes it fairly complex to use it in code.

You can call various versions of this “global generic function” as follows:

var
 gf: TGenericFunction;
begin
 gf := TGenericFunction.Create;
 try
 Show (gf.WithParam<string>('foo'));
 Show (gf.WithParam<Integer> (122));
 Show (gf.WithParam('hello'));
 Show (gf.WithParam (122));
 Show (gf.WithParam(Button1));
 Show (gf.WithParam<TObject>(Button1));
 finally
 gf.Free;
 end;

All of the calls above are correct, as the parametric type can be implicit in these
calls. Notice the generic type is displayed (as specified or inferred) and not the
actual type of the parameter, which explains this output:

string
Integer
string
ShortInt
TButton
TObject

If you call the method without indicating the type between angle brackets, the actual
type is inferred from the parameter's type. If you call the method with a type and a
parameter, the parameter's type must match the generic type declaration. So the
three lines below won't compile:

 Show (gf.WithParam<Integer>('foo'));
 Show (gf.WithParam<string> (122));
 Show (gf.WithParam<TButton>(self));

Marco Cantù, Object Pascal Handbook

396 - 14: Generics

Generic Type Instantiation

Notice this is a rather advanced section focusing on some of the internals
of generics and their potential optimization. Good for a second read, not if
this is the first time you are looking into generics.

With the exception of some optimizations, every time you instantiate a generic type,
whether in a method or in a class, a new type is generated by the compiler. This new
type shares no code with different instances of the same generic type (or different
versions of the same method).

Let's look at an example (which is part of the GenericCodeGen application project).
The program has a generic class defined as:

type
 TSampleClass <T> = class
 private
 data: T;
 public
 procedure One;
 function ReadT: T;
 procedure SetT (value: T);
 end;

The three methods are implemented as follows (notice that the One method is abso-
lutely independent from the generic type):

procedure TSampleClass<T>.One;
begin
 Form30.Show ('OneT');
end;

function TSampleClass<T>.ReadT: T;
begin
 Result := data;
end;

procedure TSampleClass<T>.SetT(value: T);
begin
 data := value;
end;

Now the main program uses the generic type mostly to figure out the in-memory
address of its methods once an instance is generated (by the compiler). This is the
code

procedure TForm30.Button1Click(Sender: TObject);
var
 t1: TSampleClass<Integer>;
 t2: TSampleClass<string>;
begin
 t1 := TSampleClass<Integer>.Create;

Marco Cantù, Object Pascal Handbook

14: Generics - 397

 t1.SetT (10);
 t1.One;

 t2 := TSampleClass<string>.Create;
 t2.SetT ('hello');
 t2.One;

 Show ('t1.SetT: ' +
 IntToHex (PInteger(@TSampleClass<Integer>.SetT)^, 8));
 Show ('t2.SetT: ' +
 IntToHex (PInteger(@TSampleClass<string>.SetT)^, 8));

 Show ('t1.One: ' +
 IntToHex (PInteger(@TSampleClass<Integer>.One)^, 8));
 Show ('t2.One: ' +
 IntToHex (PInteger(@TSampleClass<string>.One)^, 8));
end;

The result is something like this (the actual values will vary):

t1.SetT: C3045089
t2.SetT: 51EC8B55
t1.One: 4657F0BA
t2.One: 46581CBA

As I anticipated, not only does the SetT method get a different version in memory
generated by the compiler for each data type used, but even the One method does,
despite the fact they are all identical.

Moreover, if you redeclare an identical generic type, you'll get a new set of imple-
mentation functions. Similarly, the same instance of a generic type used in different
units forces the compiler to generate the same code over and over, possibly causing
significant code bloat. For this reason if you have a generic class with many methods
that don't depend on the generic type, it is recommended to define a base non-
generic class with those common methods and an inherited generic class with the
generic methods: this way the base class methods are only compiled and included in
the executable once.

note There is currently compiler, linker, and low-level RTL work being done to reduce the size increase
caused by generics in scenarios like those outlined in this section. See for example the considera-
tions in http://delphisorcery.blogspot.it/2014/10/new-language-feature-in-xe7.html.

Generic Type Functions

The biggest problem with the generic type definitions we have seen so far is that
there is very little you can do with elements of the generic class type. There are two
techniques you can use to overcome this limitation. The first is to make use of the

Marco Cantù, Object Pascal Handbook

398 - 14: Generics

few special functions of the runtime library that specifically support generic types;
the second (and much more powerful) is to define generic classes with constraints
on the types you can use.

I'll focus on the first technique in this section and on constraints in the next section.
As I mentioned, there are some RTL functions that work on the parametric type (T)
of generic type definition:

· Default (T) is a actually a new function introduced along with generics that
returns the empty or “zero value” or null value for the current type; this can be
zero, an empty string, nil, and so on; the zero-initialized memory has the same
value of a global variable of the same type (differently from local variables, in
fact, global ones are initialized to “zero” by the compiler);

· TypeInfo (T) returns the pointer to the runtime information for the current ver-
sion of the generic type; you'll find a lot more information about type
information in Chapter 16;

· SizeOf (T) returns memory size of the type in bytes (which in case of a reference
type like a string or an object would be the size of the reference, that is 4 bytes for
a 32-bit compiler and 8 bytes for a 64-bit compiler).

· IsManagedType(T) indicates if the type is managed in memory, as happens for
strings and dynamic arrays

· HasWeakRef(T) is tied to ARC-enabled compilers, and indicates whether the tar-
get type has weak references, requiring specific memory management support

· GetTypeKind(T) is a shortcut for accessing the type kind from the type informa-
tion; which is a slightly higher level type definition than the one returned by
TypeInfo.

note All of these methods return compiler evaluated constants rather than calling actual functions at
runtime. The importance of this is not in the fact these operations are very fast, but that this
makes it possible for the compiler and the linker to optimize the generated code, removing unused
branches. If you have a case or an if statement based on the return value of one of these functions,
the compiler can figure out that for a given type only one of the branches is going to be executed,
removing the useless code. When the same generic method is compiled for a different type, it
might end up using a different branch, but again the compiler can figure out up front and optimize
the size of the method.

The GenericTypeFunc application project has a generic class showing the three
generic type functions in action:

type
 TSampleClass <T> = class
 private
 data: T;

Marco Cantù, Object Pascal Handbook

14: Generics - 399

 public
 procedure Zero;
 function GetDataSize: Integer;
 function GetDataName: string;
 end;

function TSampleClass<T>.GetDataSize: Integer;
begin
 Result := SizeOf (T);
end;

function TSampleClass<T>.GetDataName: string;
begin
 Result := GetTypeName (TypeInfo (T));
end;

procedure TSampleClass<T>.Zero;
begin
 data := Default (T);
end;

In the GetDataName method I used the GetTypeName function (of the System.TypInfo
unit) rather than directly accessing the data structure because it performs the
proper conversion from the encoded string value holding the type name.

Given the declaration above, you can compile the following test code, that repeats
itself three times on three different generic type instances. I've omitted the repeated
code, but show the statements used to access the data field, as they change depend-
ing on the actual type:

var
 t1: TSampleClass<Integer>;
 t2: TSampleClass<string>;
 t3: TSampleClass<double>;
begin
 t1 := TSampleClass<Integer>.Create;
 t1.Zero;
 Show ('TSampleClass<Integer>');
 Show ('data: ' + IntToStr (t1.data));
 Show ('type: ' + t1.GetDataName);
 Show ('size: ' + IntToStr (t1.GetDataSize));

 t2 := TSampleClass<string>.Create;
 ...
 Show ('data: ' + t2.data);

 t3 := TSampleClass<double>.Create;
 ...
 Show ('data: ' + FloatToStr (t3.data));

Running this code (from the GenericTypeFunc application project) produces the fol-
lowing output:

Marco Cantù, Object Pascal Handbook

400 - 14: Generics

TSampleClass<Integer>
data: 0
type: Integer
size: 4
TSampleClass<string>
data:
type: string
size: 4
TSampleClass<double>
data: 0
type: Double
size: 8

Notice that you can use the generic type functions also on specific types, outside of
the context of generic classes. For example, you can write:

var
 I: Integer;
 s: string;
begin
 I := Default (Integer);
 Show ('Default Integer': + IntToStr (I));

 s := Default (string);
 Show ('Default String': + s);

 Show ('TypeInfo String': +
 GetTypeName (TypeInfo (string));

This is the trivial output:

Default Integer: 0
Default String:
TypeInfo String: string

note You cannot apply the TypeInfo call to a variable, like TypeInfo(s) in the code above, but only to a
type.

Class Constructors for Generic Classes

A very interesting case arises when you define a class constructor for a generic class.
In fact, one such constructor is generated by the compiler and called for each
generic class instance, that is, for each actual type defined using the generic tem-
plate. This is quite interesting, because it would be very complex to execute
initialization code for each actual instance of the generic class you are going to cre-
ate in your program without a class constructor.

Marco Cantù, Object Pascal Handbook

14: Generics - 401

As an example, consider a generic class with some class data. You'll get an instance
of this class data for each generic class instance. If you need to assign an initial
value to this class data, you cannot use the unit initialization code, as in the unit
defining the generic class you don't know which actual classes you are going to
need.

The following is a bare bones example of a generic class with a class constructor
used to initialize the DataSize class field, taken from the GenericClassCtor applica-
tion project:

type
 TGenericWithClassCtor <T> = class
 private
 FData: T;
 procedure SetData(const Value: T);
 public
 class constructor Create;
 property Data: T read FData write SetData;
 class var
 DataSize: Integer;
 end;

This is the code of the generic class constructor, which uses an internal string list
(see the full source code for implementation details) for keeping track of which class
constructors are actually called:

class constructor TGenericWithClassCtor<T>.Create;
begin
 DataSize := SizeOf (T);
 ListSequence.Add(ClassName);
end;

The demo program creates and uses a couple of instances of the generic class, and
also declares the data type for a third, which is removed by the linker:

var
 genInt: TGenericWithClassCtor <SmallInt>;
 genStr: TGenericWithClassCtor <string>;
type
 TGenDouble = TGenericWithClassCtor <Double>;

If you ask the program to show the contents of the ListSequence string list, you'll
see only the types that have actually been initialized:

TGenericWithClassCtor<System.SmallInt>
TGenericWithClassCtor<System.string>

However, if you create generic instances based on the same data type in different
units, the linker might not work as expected and you'll have multiple calls to the
same generic class constructor (or, to be more precise, two generic class construc-
tors for the same type).

Marco Cantù, Object Pascal Handbook

402 - 14: Generics

note It is not easy to address a similar problem. To avoid a repeated initialization, you might want to
check if the class constructor has already been executed. In general, though, this problem is part of
a more comprehensive limitation of generic classes and the linkers inability to optimize them.

I've added a procedure called Useless in the secondary unit of this example that,
when uncommented, will highlight the problem, with an initialization sequence
like:

TGenericWithClassCtor<System.string>
TGenericWithClassCtor<System.SmallInt>
TGenericWithClassCtor<System.string>

Generic Constraints

As we have seen, there is very little you can do in the methods of your generic class
over the generic type value. You can pass it around (that is, assign it) and perform
the limited operations allowed by the generic type functions I've just covered.

To be able to perform some actual operations of the generic type of class, you gener-
ally have to place a constraint on it. For example, if you limit the generic type to be a
class, the compiler will let you call all of the TObject methods on it. You can also
further constrain the class to be part of a given hierarchy or to implement a specific
interface, making it possible to call the class or interface method on an instance of
the generic type.

Class Constraints

The simplest constraint you can adopt is a class constraint. To use it, you can
declare generic type as:

type
 TSampleClass <T: class> = class

By specifying a class constraint you indicate that you can use only object types as
generic types. With the following declaration (taken from the ClassConstraint
application project):

type
 TSampleClass <T: class> = class
 private
 data: T;
 public

Marco Cantù, Object Pascal Handbook

14: Generics - 403

 procedure One;
 function ReadT: T;
 procedure SetT (t: T);
 end;

you can create the first two instances but not the third:

 sample1: TSampleClass<TButton>;
 sample2: TSampleClass<TStrings>;
 sample3: TSampleClass<Integer>; // Error

The compiler error caused by this last declaration would be:

E2511 Type parameter 'T' must be a class type

What's the advantage of indicating this constraint? In the generic class methods you
can now call any TObject method, including virtual ones! This is the One method of
the TSampleClass generic class:

procedure TSampleClass<T>.One;
begin
 if Assigned (data) then
 begin
 Form30.Show ('ClassName: ' + data.ClassName);
 Form30.Show ('Size: ' + IntToStr (data.InstanceSize));
 Form30.Show ('ToString: ' + data.ToString);
 end;
end;

note Two comments here. The first is that InstanceSize returns the actual size of the object, unlike the
generic SizeOf function we used earlier, which returns the size of the reference type. Second,
notice the use of the ToString method of the TObject class.

You can play with the program to see its actual effect, as it defines and uses a few
instances of the generic type, as in the following code snippet:

var
 sample1: TSampleClass<TButton>;
begin
 sample1 := TSampleClass<TButton>.Create;
 try
 sample1.SetT (Sender as TButton);
 sample1.One;
 finally
 sample1.Free;
 end;

Notice that by declaring a class with a customized ToString method, this version
will get called when the data object is of the specific type, regardless of the actual
type provided to the generic type. In other words, if you have a TButton descendant
like:

type
 TMyButton = class (TButton)

Marco Cantù, Object Pascal Handbook

404 - 14: Generics

 public
 function ToString: string; override;
 end;

You can pass this object as value of a TSampleClass<TButton> or define a specific
instance of the generic type, and in both cases calling One ends up executing the spe-
cific version of ToString:

var
 sample1: TSampleClass<TButton>;
 sample2: TSampleClass<TMyButton>;
 mb: TMyButton;
begin
 ...
 sample1.SetT (mb);
 sample1.One;
 sample2.SetT (mb);
 sample2.One;

Similarly to a class constraint, you can have a record constraint, declared as:

type
 TSampleRec <T: record> = class

However, there is very little that different records have in common (there is no com-
mon ancestor), so this declaration is somewhat limited.

Specific Class Constraints

If your generic class needs to work with a specific subset of classes (a specific hierar-
chy), you might want to resort to specifying a constraint based on a given base class.
For example, if you declare:

type
 TCompClass <T: TComponent> = class

instances of this generic class can be applied only to component classes, that is, any
TComponent descendant class. This let's you have a very specific generic type (yes, it
sounds odd, but that's what it really is) and the compiler will let you use all of the
methods of the TComponent class while working on the generic type.

If this seems extremely powerful, think twice. If you consider what you can achieve
with inheritance and type compatibly rules, you might be able to address the same
problem using traditional object-oriented techniques rather than having to use
generic classes. I'm not saying that a specific class constraint is never useful, but it is
certainly not as powerful as a higher-level class constraint or (something I find very
interesting) an interface-based constraint.

Marco Cantù, Object Pascal Handbook

14: Generics - 405

Interface Constraints

Rather than constraining a generic class to a given class, it is generally more flexible
to accept as type parameter only classes implementing a given interface. This makes
it possible to call the interface on instances of the generic type. This use of interface
constraints for generics is also very common in the C# language. Let me start by
showing you an example (from the IntfConstraint application project). First, we
need to declare an interface:

type
 IGetValue = interface
 ['{60700EC4-2CDA-4CD1-A1A2-07973D9D2444}']
 function GetValue: Integer;
 procedure SetValue (Value: Integer);
 property Value: Integer read GetValue write SetValue;
 end;

Next, we can define a class implementing it:

type
 TGetValue = class (TSingletonImplementation, IGetValue)
 private
 fValue: Integer;
 public
 constructor Create (Value: Integer = 0);
 function GetValue: Integer;
 procedure SetValue (Value: Integer);
 end;

Things start to get interesting in the definition of a generic class limited to types that
implement the given interface:

type
 TInftClass <T: IGetValue> = class
 private
 val1, val2: T; // or IGetValue
 public
 procedure Set1 (val: T);
 procedure Set2 (val: T);
 function GetMin: Integer;
 function GetAverage: Integer;
 procedure IncreaseByTen;
 end;

Notice that in the code of the generic methods of this class we can write, for exam-
ple:

function TInftClass<T>.GetMin: Integer;
begin
 Result := min (val1.GetValue, val2.GetValue);
end;

procedure TInftClass<T>.IncreaseByTen;

Marco Cantù, Object Pascal Handbook

406 - 14: Generics

begin
 val1.SetValue (val1.GetValue + 10);
 val2.Value := val2.Value + 10;
end;

With all these definitions, we can now use the generic class as follows:

procedure TFormIntfConstraint.btnValueClick(
 Sender: TObject);
var
 iClass: TInftClass<TGetValue>;
begin
 iClass := TInftClass<TGetValue>.Create;
 try
 iClass.Set1 (TGetValue.Create (5));
 iClass.Set2 (TGetValue.Create (25));
 Show ('Average: ' + IntToStr (iClass.GetAverage));
 iClass.IncreaseByTen;
 Show ('Min: ' + IntToStr (iClass.GetMin));
 finally
 iClass.val1.Free;
 iClass.val2.Free;
 iClass.Free;
 end;
end;

To show the flexibility of this generic class, I've created another totally different
implementation for the interface:

 TButtonValue = class (TButton, IGetValue)
 public
 function GetValue: Integer;
 procedure SetValue (Value: Integer);
 class function MakeTButtonValue (Owner: TComponent;
 Parent: TWinControl): TButtonValue;
 end;

function TButtonValue.GetValue: Integer;
begin
 Result := Left;
end;

procedure TButtonValue.SetValue(Value: Integer);
begin
 Left := Value;
end;

The class function (not listed in the book) creates a button within a Parent control
in a random position and is used in the following sample code:

procedure TFormIntfConstraint.btnValueButtonClick(
 Sender: TObject);
var
 iClass: TInftClass<TButtonValue>;
begin

Marco Cantù, Object Pascal Handbook

14: Generics - 407

 iClass := TInftClass<TButtonValue>.Create;
 try
 iClass.Set1 (TButtonValue.MakeTButtonValue (
 self, ScrollBox1));
 iClass.Set2 (TButtonValue.MakeTButtonValue (
 self, ScrollBox1));
 Show ('Average: ' + IntToStr (iClass.GetAverage));
 Show ('Min: ' + IntToStr (iClass.GetMin));
 iClass.IncreaseByTen;
 Show ('New Average: ' + IntToStr (iClass.GetAverage));
 finally
 iClass.Free;
 end;
end;

Interface References vs. Generic Interface
Constraints

In the last example I have defined a generic class that works with any object imple-
menting a given interface. I could have obtained a similar effect by creating a
standard (non-generic) class based on interface references. In fact, I could have
defined a class like (again part of the IntfConstraint application project):

type
 TPlainInftClass = class
 private
 val1, val2: IGetValue;
 public
 procedure Set1 (val: IGetValue);
 procedure Set2 (val: IGetValue);
 function GetMin: Integer;
 function GetAverage: Integer;
 procedure IncreaseByTen;
 end;

What is different between these two approaches? A first difference is that in the
class above you can pass two objects of different types to the setter methods, pro-
vided their classes both implement the given interface, while in the generic version
you can pass only objects of the given type (to any given instance of the generic
class). So the generic version is more conservative and strict in terms of type check-
ing.

In my opinion, the key difference is that using the interface-based version means
having Object Pascal's reference counting mechanism in action, while using the
generic version the class is dealing with plain objects of a given type and reference
counting is not involved.

Marco Cantù, Object Pascal Handbook

408 - 14: Generics

Moreover, the generic version could have multiple constraints, like a constructor
constraint and lets you use the various generic-functions (like asking for the actual
type of the generic type), something you cannot do when using an interface. (When
you are working with an interface, in fact, you have no access to the base TObject
methods).

In other words, using a generic class with an interface constraint makes it possible
to have the benefits of interfaces without their nuisances. Still, it is worth noticing
that in most cases the two approaches would be equivalent, and in others the inter-
face-based solution would be more flexible.

Default Constructor Constraint

There is another possible generic type constraint, called default constructor or
parameterless constructor. If you need to invoke the default constructor to create a
new object of the generic type (for example for filling a list) you can use this con-
straint. In theory (and according to the documentation), the compiler should let you
use it only for those types with a default constructor. In practice, if a default con-
structor doesn't exist, the compiler will let it go and call the default constructor of
TObject.

A generic class with a constructor constraint can be written as follows (this one is
extracted by the IntfConstraint application project):

type
 TConstrClass <T: class, constructor> = class
 private
 val: T;
 public
 constructor Create;
 function Get: T;
 end;

note You can also specify the constructor constraint without the class constraint, as the former proba-
bly implies the latter. Listing both of them makes the code more readable.

Given this declaration, you can use the constructor to create a generic internal
object, without knowing its actual type up front, and write:

constructor TConstrClass<T>.Create;
begin
 val := T.Create;
end;

Marco Cantù, Object Pascal Handbook

14: Generics - 409

How can we use this generic class and what are the actual rules? In the next exam-
ple I have defined two classes, one with a default (parameterless) constructor, the
second with a single constructor having one parameter:

type
 TSimpleConst = class
 public
 Value: Integer;
 constructor Create; // set Value to 10
 end;

 TParamConst = class
 public
 Value: Integer;
 constructor Create (I: Integer); // set Value to I
 end;

As I mentioned earlier, in theory you should only be able to use the first class, while
in practice you can use both:

var
 constructObj: TConstrClass<TSimpleCost>;
 paramCostObj: TConstrClass<TParamCost>;
begin
 constructObj := TConstrClass<TSimpleCost>.Create;
 Show ('Value 1: ' + IntToStr (constructObj.Get.Value));

 paramCostObj := TConstrClass<TParamCost>.Create;
 Show ('Value 2: ' + IntToStr (paramCostObj.Get.Value));

The output of this code is:

Value 1: 10
Value 2: 0

In fact, the second object is never initialized. If you debug the application trace into
the code you'll see a call to TObject.Create (which I consider wrong). Notice that if
you try calling directly:

 with TParamConst.Create do

the compiler will (correctly) raise the error:

[DCC Error] E2035 Not enough actual parameters

note Even if a direct call to TParamConst.Create will fail at compile time (as explained here), a similar
call using a class reference or any other form of indirection will succeed, which probably explains
the behavior of the effect of the constructor constraint.

Marco Cantù, Object Pascal Handbook

410 - 14: Generics

Constraints Summary and Combining Them

As there are so many different constraints you can put on a generic type, let me pro-
vide a short summary here, in code terms:

type
 TSampleClass <T: class> = class
 TSampleRec <T: record> = class
 TCompClass <T: TButton> = class
 TInftClass <T: IGetValue> = class
 TConstrClass <T: constructor> = class

What you might not immediately realize after looking at constraints (and this cer-
tainly took me some time to get used to) is that you can combine them. For example,
you can define a generic class limited to a sub-hierarchy and requiring also a given
interface, like in:

type
 TInftComp <T: TComponent, IGetValue> = class

Not all combinations make sense: for example you cannot specify both a class and a
record, while using a class constraint combined with a specific class constraint
would be redundant. Finally, notice that there is nothing like a method constraint,
something that can be achieved with a single-method interface constraint (much
more complex to express, though).

Predefined Generic Containers

Since the early days of templates in the C++ Language, one of the most obvious uses
of template classes has been the definition of template containers or lists, up to the
point that the C++ language defined a Standard Template Library (or STL).

When you define a list of objects, like Object Pascal's own TObjectList, you have a
list that can potentially hold objects of any kind. Using either inheritance or compo-
sition you can indeed define custom containers for specific a type, but this is a
tedious (and potentially error-prone) approach.

Object Pascal compilers come with a small set of generic container classes you can
find in the Generics.Collections unit. The four core container classes are all
implemented in an independent way (the is no inheritance among these classes), all
implemented in a similar fashion (using a dynamic array), and are all mapped to the
corresponding non-generic container class of the older Contnrs unit:

type

Marco Cantù, Object Pascal Handbook

14: Generics - 411

 TList<T> = class
 TQueue<T> = class
 TStack<T> = class
 TDictionary<TKey,TValue> = class
 TObjectList<T: class> = class(TList<T>)
 TObjectQueue<T: class> = class(TQueue<T>)
 TObjectStack<T: class> = class(TStack<T>)
 TObjectDictionary<TKey,TValue> = class(TDictionary<TKey,TValue>)

The logical difference among these classes should be quite obvious considering their
names. A good way to test them, is to figure out how many changes you have to per-
form on existing code that uses a non-generic container class.

note The program uses only a few methods, so it is not a great test for interface compatibility between
generic and non-generic lists, but I decided to take an existing program rather than fabricating
one. Another reason for showing this demo, is that you might also have existing programs that
don't use generic collection classes and will be encouraged to enhance them by taking advantage of
this language feature.

Using TList<T>

The program, called ListDemoMd2005, has a unit defining a TDate class, and the
main form used to refer to a TList of dates. As a starting point, I added a uses
clause referring to Generics.Collections, then I changed the declaration of the
main form field to:

 private
 ListDate: TList <TDate>;

Of course, the main form OnCreate event handler that does create the list needed to
be updated as well, becoming:

procedure TForm1.FormCreate(Sender: TObject);
begin
 ListDate := TList<TDate>.Create;
end;

Now we can try to compile the rest of the code as it is. The program has a “wanted”
bug, trying to add a TButton object to the list. The corresponding code used to com-
pile and now fails:

procedure TForm1.ButtonWrongClick(Sender: TObject);
begin
 // add a button to the list
 ListDate.Add (Sender); // Error:
 // E2010 Incompatible types: 'TDate' and 'TObject'
end;

Marco Cantù, Object Pascal Handbook

412 - 14: Generics

The new list of dates is more robust in terms of type-checking than the original
generic list pointers. Having removed that line, the program compiles and works.
Still, it can be improved.

This is the original code used to display all of the dates of the list in a ListBox con-
trol:

var
 I: Integer;
begin
 ListBox1.Clear;
 for I := 0 to ListDate.Count - 1 do
 Listbox1.Items.Add (
 (TObject(ListDate [I]) as TDate).Text);

Notice the type cast, due to the fact that the program was using a list of pointers
(TList), and not a list of objects (TObjectList). We can easily improve the program
by writing:

 for I := 0 to ListDate.Count - 1 do
 Listbox1.Items.Add (ListDate [I].Text);

Another improvement to this snippet can come from using an enumeration (some-
thing the predefined generic lists fully support) rather than a plain for loop:

var
 aDate: TDate;
begin
 for aDate in ListDate do
 begin
 Listbox1.Items.Add (aDate.Text);
 end;

Finally, the program can be improved by using a generic TObjectList owning the
TDate objects, but that's a topic for the next section.

As I mentioned earlier, the TList<T> generic class has a high degree of compatibil-
ity. It has all the classic methods, like Add, Insert, Remove, and IndexOf. The
Capacity and Count properties are there as well. Oddly, Items becomes Item, but
being the default property (accessed by using the square brackets without the prop-
erty name) you seldom explicitly refer to it anyway.

Sorting a TList<T>

What is interesting to understand is how TList<T> sorting works (my goal here is to
add sorting support to the ListDemoMd2005 application project). The Sort method is
defined as:

procedure Sort; overload;

Marco Cantù, Object Pascal Handbook

14: Generics - 413

procedure Sort(const AComparer: IComparer<T>); overload;

where the IComparer<T> interface is declared in the Generics.Defaults unit. If you
call the first version the program, it will use the default comparer, initialized by the
default constructor of TList<T>. In our case this will be useless.

What we need to do, instead, is to define a proper implementation of the ICom-
parer<T> interface. For type compatibility, we need to define an implementation
that works on the specific TDate class.

There are multiple ways to accomplish this, including using anonymous methods
(covered in the next section even though that's a topic introduced in the next chap-
ter). An interesting technique, also because it gives me the opportunity to show
several usage patterns of generics, is to take advantage of a structural class that is
part of the unit Generics.Defaults and is called TComparer.

note I'm calling this class structural because it helps defining the structure of the code, its architecture,
but doesn't add a lot in terms of actual implementation. There might be a better name to refer to
such a class, though.

The class is defined as an abstract and generic implementation of the interface, as
follows:

type
 TComparer<T> = class(TInterfacedObject, IComparer<T>)
 public
 class function Default: IComparer<T>;
 class function Construct(
 const Comparison: TComparison<T>): IComparer<T>;
 function Compare(
 const Left, Right: T): Integer; virtual; abstract;
 end;

What we have to do is instantiate this generic class for the specific data type (TDate,
in the example) and also inherit a concrete class that implements the Compare
method for the specific type. The two operations can be done at once, using a coding
idiom that may take a while to digest:

type
 TDateComparer = class (TComparer<TDate>)
 function Compare(
 const Left, Right: TDate): Integer; override;
 end;

If you think this code looks very unusual, you're not alone. The new class inherits
from a specific instance of the generic class, something you could express in two
separate steps as:

type
 TAnyDateComparer = TComparer<TDate>;

Marco Cantù, Object Pascal Handbook

414 - 14: Generics

 TMyDateComparer = class (TAnyDateComparer)
 function Compare(
 const Left, Right: TDate): Integer; override;
 end;

note Having the two separate declarations might help reduce the generated code where you are reusing
the base TAnyDateComparer type in the same unit.

You can find the actual implementation of the Compare function in the source code,
as that's not the key point I want to stress here. Keep in mind, though, that even if
you sort the list its IndexOf method won't take advantage of it (unlike the
TStringList class).

Sorting with an Anonymous Method

The sorting code presented in the previous section looks quite complicated and it
really is. It would be much easier and cleaner to pass the sorting function to the
Sort method directly. In the past this was generally achieved by passing a function
pointer. In Object Pascal this can be done by passing an anonymous method (a kind
of method pointer, with several extra features, covered in detail in the next chapter).

note I suggest you have a look at this section even if you don't know much about anonymous methods,
and then read it again after going through the next chapter.

The IComparer<T> parameter of the Sort method of the TList<T> class, in fact, can
be used by calling the Construct method of TComparer<T>, passing an anonymous
method as a parameter defined as:

type
 TComparison<T> = reference to function(
 const Left, Right: T): Integer;

In practice you can write a type-compatible function and pass it as parameter:

function DoCompare (const Left, Right: TDate): Integer;
var
 ldate, rDate: TDateTime;
begin
 lDate := EncodeDate(Left.Year, Left.Month, Left.Day);
 rDate := EncodeDate(Right.Year, Right.Month, Right.Day);
 if lDate = rDate then
 Result := 0
 else if lDate < rDate then
 Result := -1
 else
 Result := 1;

Marco Cantù, Object Pascal Handbook

14: Generics - 415

end;

procedure TForm1.ButtonAnonSortClick(Sender: TObject);
begin
 ListDate.Sort (TComparer<TDate>.Construct (DoCompare));
end;

note The DoCompare method above works like an anonymous method even if it does have a name. We'll
see in a later code snippet that this is not required, though. Have patience until the next chapter
for more information about this Object Pascal language construct. Notice also that with a TDate
record I could have defined less than and greater than operators, making this code simpler, but
even with a class I could have placed the comparison code in a method of the class.

If this looks quite traditional, consider you could have avoided the declaration of a
separate function and pass it (its source code) as parameter to the Construct
method, as follows:

procedure TForm1.ButtonAnonSortClick(Sender: TObject);
begin
 ListDate.Sort (TComparer<TDate>.Construct (
 function (const Left, Right: TDate): Integer
 var
 ldate, rDate: TDateTime;
 begin
 lDate := EncodeDate(Left.Year,
 Left.Month, Left.Day);
 rDate := EncodeDate(Right.Year,
 Right.Month, Right.Day);
 if lDate = rDate then
 Result := 0
 else if lDate < rDate then
 Result := -1
 else
 Result := 1;
 end));
end;

This example should have whet your appetite for learning more about anonymous
methods! For sure, this last version is much simpler to write than the original com-
parison covered in the previous section, although for many Object Pascal developers
having a derived class might look cleaner and be easier to understand (the inherited
version separates the logic better, making potential code reuse easier, but many
times you won't make use of it anyway).

Marco Cantù, Object Pascal Handbook

416 - 14: Generics

Object Containers

Beside the generic classes covered at the beginning of this section, there are also
four inherited generic classes that are derived from the base classes defined in the
Generics.Collections unit, mimicking existing classes of the Contnrs unit:

type
 TObjectList<T: class> = class(TList<T>)
 TObjectQueue<T: class> = class(TQueue<T>)
 TObjectStack<T: class> = class(TStack<T>)

Compared to their base classes, there are two key differences. One is that these
generic types can be used only for objects; the second is that they define a custom-
ized Notification method, that in the case when an object is removed from the list
(beside optionally calling the OnNotify event handler), will Free the object.

In other words, the TObjectList<T> class behaves like its non-generic counterpart
when the OwnsObjects property is set. If you are wondering why this is not an
option any more, consider that TList<T> can now be used directly to work with
object types, unlike its non-generic counterpart.

There is also a fourth class, again, called TObjectDictionary<TKey, TValue>, which
is defined in a different way, as it can own the key object, the value objects, or both
of them. See the TDictionaryOwnerships set and the class constructor for more
details.

Using a Generic Dictionary

Of all the predefined generic container classes, the one probably worth more
detailed study is the generic dictionary, TObjectDictionary<TKey, Tvalue>.

note Dictionary in this case means a collection of elements each with a (unique) key value referring to
it. (It is also known as an associative array.) In a classic dictionary you have words acting as keys
for their definitions, but in programming terms the key doesn't have to be a string (even if this is a
rather frequent case).

Other classes are just as important, but they seem to be easier to use and under-
stand. As an example of using a dictionary, I've written an application that fetches
data from a database table, creates an object for each record, and uses a composite
index with a customer ID and a description as key. The reason for this separation is
that a similar architecture can easily be used to create a proxy, in which the key
takes the place of a light version of the actual object loaded from the database.

Marco Cantù, Object Pascal Handbook

14: Generics - 417

These are the two classes used by the CustomerDictionary application project for
the key and the actual value. The first has only two relevant fields of the correspond-
ing database table, while the second has the complete data structure (I've omitted
the private fields, getter methods, and setter methods):

type
 TCustomerKey = class
 private
 ...
 published
 property CustNo: Double
 read FCustNo write SetCustNo;
 property Company: string
 read FCompany write SetCompany;
 end;

 TCustomer = class
 private
 ..
 procedure Init;
 procedure EnforceInit;
 public
 constructor Create (aCustKey: TCustomerKey);
 property CustKey: TCustomerKey
 read FCustKey write SetCustKey;
 published
 property CustNo: Double
 read GetCustNo write SetCustNo;
 property Company: string
 read GetCompany write SetCompany;
 property Addr1: string
 read GetAddr1 write SetAddr1;
 property City: string
 read GetCity write SetCity;
 property State: string
 read GetState write SetState;
 property Zip: string
 read GetZip write SetZip;
 property Country: string
 read GetCountry write SetCountry;
 property Phone: string
 read GetPhone write SetPhone;
 property FAX: string
 read GetFAX write SetFAX;
 property Contact: string
 read GetContact write SetContact;
 class var
 RefDataSet: TDataSet;
 end;

While the first class is very simple (each object is initialized when it is created), the
TCustomer class uses a lazy initialization (or proxy) model and keeps around a ref-
erence to the source database shared (class var) by all objects. When an object is

Marco Cantù, Object Pascal Handbook

418 - 14: Generics

created it is assigned a reference to the corresponding TCustomerKey, while a class
data field refers to the source dataset. In each getter method, the class checks if the
object has indeed been initialized before returning the data, as in the following case:

function TCustomer.GetCompany: string;
begin
 EnforceInit;
 Result := FCompany;
end;

The EnforceInit method checks a local flag, eventually calling Init to load data
from the database to the in-memory object:

procedure TCustomer.EnforceInit;
begin
 if not fInitDone then
 Init;
end;

procedure TCustomer.Init;
begin
 RefDataSet.Locate('custno', CustKey.CustNo, []);

 // could also load each published field via RTTI
 FCustNo := RefDataSet.FieldByName ('CustNo').AsFloat;
 FCompany := RefDataSet.FieldByName ('Company').AsString;
 FCountry := RefDataSet.FieldByName ('Country').AsString;
 ...
 fInitDone := True;
end;

Given these two classes, I've added a special purpose dictionary to the application.
This custom dictionary class inherits from a generic class instantiated with the
proper types and adds to it a specific method:

type
 TCustomerDictionary = class (
 TObjectDictionary <TCustomerKey, TCustomer>)
 public
 procedure LoadFromDataSet (dataset: TDataSet);
 end;

The loading method populates the dictionary, copying data in memory for only the
key objects:

procedure TCustomerDictionary.LoadFromDataSet(
 dataset: TDataSet);
var
 custKey: TCustomerKey;
begin
 TCustomer.RefDataSet := dataset;
 dataset.First;
 while not dataset.EOF do
 begin

Marco Cantù, Object Pascal Handbook

14: Generics - 419

 custKey := TCustomerKey.Create;
 custKey.CustNo := dataset ['CustNo'];
 custKey.Company := dataset ['Company'];
 self.Add(custKey, TCustomer.Create (custKey));
 dataset.Next;
 end;
end;

The demo program has a main form and a data module hosting a ClientDataSet
component. The main form has a ListView control that is filled when a user presses
the only button.

note You might want to replace the ClientDataSet component with a real dataset, expanding the exam-
ple considerably in terms of usefulness, as you could run a query for the keys and a separate one
for the actual data of each single TCustomer object. I have similar code, but adding it here would
have distracted us too much from the goal of the example, which is experimenting with a generic
dictionary class.

After loading the data in the dictionary, the btnPopulateClick method uses an enu-
merator on the dictionary's keys:

procedure TFormCustomerDictionary.btnPopulateClick(
 Sender: TObject);
var
 custkey: TCustomerKey;
 listItem: TListItem;
begin
 DataModule1.ClientDataSet1.Active := True;
 CustDict.LoadFromDataSet(DataModule1.ClientDataSet1);
 for custkey in CustDict.Keys do
 begin
 listItem := ListView1.Items.Add;
 listItem.Caption := custkey.Company;
 listItem.SubItems.Add(FloatTOStr (custkey.CustNo));
 listItem.Data := custkey;
 end;
end;

This fills the first two columns of the ListView control, with the data available in the
key objects. Whenever a user selects an item of the ListView control, though, the
program will fill a third column:

procedure TFormCustomerDictionary.ListView1SelectItem(
 Sender: TObject; Item: TListItem; Selected: Boolean);
var
 aCustomer: TCustomer;
begin
 aCustomer := CustDict.Items [Item.data];
 Item.SubItems.Add(IfThen (
 aCustomer.State <> '',
 aCustomer.State + ', ' + aCustomer.Country,
 aCustomer.Country));

Marco Cantù, Object Pascal Handbook

420 - 14: Generics

end;

The method above gets the object mapped to the given key, and uses its data.
Behind the scenes, the first time a specific object is used, the property access
method triggers the loading of the entire data for the TCustomer object.

Dictionaries vs. String Lists

Over the years many Object Pascal developers, myself included, have overused the
TStringList class. Not only you can use it for a plain list of strings and for a list of
name/value pairs, but you can also use it to have a list objects associated with
strings and search these objects. Since the introduction of generics, it is much better
to use them instead of this use a favorite tool as a swiss-army knife kind of
approach.

Specific and focused container classes are a much better option. For example, a
generic TDictionary with a string key and an object-value will generally be better
than a string list on two counts: cleaner and safer code, as there will be fewer type
casts involved, and faster execution, given that dictionaries use hash tables.

To demonstrate these differences I've written a rather simple application project,
called StringListVsDictionary. Its main form stores two identical lists, declared
as:

 private
 sList: TStringList;
 sDict: TDictionary<string,TMyObject>;

The lists are filled with random but identical entries by a cycle, which repeats this
code:

 sList.AddObject (aName, anObject);
 sDict.Add (aName, anObject);

Two buttons retrieve each element of the list and does a search by name on each of
them. Both methods scan the string list for the values, but the first locates the
objects in the string list, while the second uses the dictionary. Notice that in the first
case you need an as cast to get back the given type, while the dictionary is tied to
that class already. Here is the main loop of the two methods:

 theTotal := 0;
 for I := 0 to sList.Count -1 do
 begin
 aName := sList[I];
 // now search for it
 anIndex := sList.IndexOf (aName);
 // get the object
 anObject := sList.Objects [anIndex] as TMyObject;

Marco Cantù, Object Pascal Handbook

14: Generics - 421

 Inc (theTotal, anObject.Value);
 end;

 theTotal := 0;
 for I := 0 to sList.Count -1 do
 begin
 aName := sList[I];
 // get the object
 anObject := sDict.Items [aName];
 Inc (theTotal, anObject.Value);
 end;

I don't want to access the strings in sequence, but figure out how much time it takes
to search in the sorted string list (which does a binary search) compared to the
hashed keys of the dictionary. Not surprisingly the dictionary is faster, here are
numbers in milliseconds for a test:

Total: 99493811
StringList: 2839
Total: 99493811
Dictionary: 686

The result is the same, given the initial values were identical, but the time is quite
different, with the dictionary taking about one fourth of the time for a million
entries.

Generic Interfaces

In the section “Sorting a TList<T>” you might have noticed the rather strange use of
a predefined interface, which had a generic declaration. It is worth looking into this
technique in detail, as it opens up significant opportunities.

The first technical element to notice is that it is perfectly legal to define a generic
interface, as I've done in the GenericInterface application project:

type
 IGetValue<T> = interface
 function GetValue: T;
 procedure SetValue (Value: T);
 end;

note This is the generic version of the IGetValue interface of the IntfContraints application project,
covered in the earlier section “Interface Constraints” of this chapter. In that case the interface had
an Integer value, now it has a generic one.

Marco Cantù, Object Pascal Handbook

422 - 14: Generics

Notice that differently from a standard interface, in case of a generic interface you
don't need to specify a GUID to be used as Interface ID (or IID). The compiler will
generate an IID for you for each instance of the generic interface, even if implicitly
declared. In fact, you don't have to create a specific instance of the generic interface
to implement it, but can define a generic class that implements the generic inter-
face:

type
 TGetValue<T> = class (TInterfacedObject, IGetValue<T>)
 private
 fValue: T;
 public
 constructor Create (Value: T);
 destructor Destroy; override;
 function GetValue: T;
 procedure SetValue (Value: T);
 end;

While the constructor assigns the initial value of the object, the destructor's only
purpose is to log that an object was destroyed. We can create an instance of this
generic class (thus generating a specific instance of the interface type behind the
scenes) by writing:

procedure TFormGenericInterface.btnValueClick(
 Sender: TObject);
var
 aVal: TGetValue<string>;
begin
 aVal := TGetValue<string>.Create (Caption);
 try
 Show ('TGetValue value: ' + aVal.GetValue);
 finally
 aVal.Free;
 end;
end;

An alternative approach, as we saw in the past for the IntfConstraint application
project, is to use an interface variable of the corresponding type, making the specific
interface type definition explicit (and not implicit as in the previous code snippet):

procedure TFormGenericInterface.btnIValueClick(
 Sender: TObject);
var
 aVal: IGetValue<string>;
begin
 aVal := TGetValue<string>.Create (Caption);
 Show ('IGetValue value: ' + aVal.GetValue);
 // freed automatically, as it is reference counted
end;

Of course, we can also define a specific class that implements the generic interface,
as in the following scenario (from the GenericInterface application project):

Marco Cantù, Object Pascal Handbook

14: Generics - 423

type
 TButtonValue = class (TButton, IGetValue<Integer>)
 public
 function GetValue: Integer;
 procedure SetValue (Value: Integer);
 class function MakeTButtonValue (Owner: TComponent;
 Parent: TWinControl): TButtonValue;
 end;

Notice that while the TGetValue<T> generic class implements the generic IGet-
Value<T> interface, the TButtonValue specific class implements the
IGetValue<Integer> specific interface. Specifically, as in a previous example, the
interface is remapped to the Left property of the control:

function TButtonValue.GetValue: Integer;
begin
 Result := Left;
end;

In the class above, the MakeTButtonValue class function is a ready-to-use method to
create an object of the class. This method is used by the third button of the main
form, as follows:

procedure TFormGenericInterface.btnValueButtonClick(
 Sender: TObject);
var
 iVal: IGetValue<Integer>;
begin
 iVal := TButtonValue.MakeTButtonValue (self, ScrollBox1);
 Show ('Button value: ' + IntToStr (iVal.GetValue));
end;

Although it is totally unrelated to generic classes, here is the implementation of the
MakeTButtonValue class function:

class function TButtonValue.MakeTButtonValue(
 Owner: TComponent; Parent: TWinControl): TButtonValue;
begin
 Result := TButtonValue.Create(Owner);
 Result.Parent := Parent;
 Result.SetBounds(Random (Parent.Width),
 Random (Parent.Height), Result.Width, Result.Height);
 Result.Text := 'btnv';
end;

Predefined Generic Interfaces

Now that we have explored how to define generic interfaces and combine them with
the use of generic and specific classes, we can get back to having a second look at the
Generics.Defaults unit. This unit defines two generic comparison interfaces:

Marco Cantù, Object Pascal Handbook

424 - 14: Generics

· IComparer<T> has a Compare method

· IEqualityComparer<T> has Equals and GetHashCode methods

These classes are implemented by some generic and specific classes, listed below
(with no implementation details):

type
 TComparer<T> = class(TInterfacedObject, IComparer<T>)
 TEqualityComparer<T> = class(
 TInterfacedObject, IEqualityComparer<T>)
 TCustomComparer<T> = class(TSingletonImplementation,
 IComparer<T>, IEqualityComparer<T>)
 TStringComparer = class(TCustomComparer<string>)

In the listing above you can see that the base class used by the generic implementa-
tions of the interfaces is either the classic reference-counted TInterfacedObject
class or the new TSingletonImplementation class. This is an oddly named class that
provides a basic implementation of IInterface with no reference counting.

note The term singleton is generally used to define a class of which you can create only one instance,
and not one with no reference counting. I consider this quite a misnomer.

As we have already seen in the “Sorting a TList<T>” section earlier in this chapter,
these comparison classes are used by the generic containers. To make things more
complicated, though, the Generics.Default unit relies quite heavily on anonymous
methods, so you should probably look at it only after reading the next chapter.

Smart Pointers in Object Pascal

When approaching generics, you might get the wrong first impression that this lan-
guage construct is mostly used for collections. While this is the simplest case for
using generic classes, and very often the first example in books and docs, generics
are useful well beyond the realm of collection (or container) classes. In the last
example of this chapter I'm going to show you a non-collection generic type, that is
the definition of a smart pointer.

If you come from an Object Pascal background, you might not have heard of smart
pointers, an idea that comes from the C++ language. In C++ you can have pointers
to objects, for which you have to manage memory directly and manually, and local
object variables that are managed automatically but have many other limitations
(including the lack of polymorphism). The idea of a smart pointer is to use a locally

Marco Cantù, Object Pascal Handbook

14: Generics - 425

managed object to take care of the lifetime of the pointer to the real object you want
to use. If this sounds too complicated, I hope the Object Pascal version (and its
code) will help clarify it.

note The term polymorphisms in OOP languages is used to denote the situation in which you assign to
a variable of a base class an object of a derived class and call one of the base class virtual methods,
potentially ending up calling the version of the virtual method of the specific subclass.

A Smart Pointer Generic Record

In Object Pascal objects are managed by reference, but records have a lifetime
bound to the method in which they are declared. When the method ends, the mem-
ory area for the record is cleaned up. So what we can do is to use a record to manage
the lifetime of an Object Pascal object. Of course, we want to write the code only
once, so we can use a generic record. Here is a first version:

type
 TSmartPointer<T: class> = record
 strict private
 FValue: T;
 function GetValue: T;
 public
 constructor Create(AValue: T);
 property Value: T read GetValue;
 end;

The Create and GetValue methods of the record could simply assign and read back
the value. Using this code you can create an object, create a smart pointer wrapping
it, and refer from one to the other:

var
 sl: TStringList;
 smartP: TSmartPointer<TStringList>;
begin
 sl := TStringList.Create;
 smartP.Create (sl);
 sl.Add('foo');
 smartP.Value.Add ('foo2');

As you may have worked out, this code causes a memory leak in the exact same way
as without the smart pointer! In fact the record is destroyed as it goes out of scope,
but it has no way of freeing the internal object. Considering a record has no destruc-
tor, how can we manage the object disposal? A trick is to use an interface inside the
record itself, as the record will automatically free the interfaced object. Should we
add an interface to the object we are wrapping? Probably not, as this imposes a sig-
nificant limitation on the objects we'll be able to pass to the smart pointer.

Marco Cantù, Object Pascal Handbook

426 - 14: Generics

Interfaces to the Rescue

A better alternative is probably to write a specific wrapper class, tied to an interface,
and use the interface reference counting mechanism to the wrapped object. The
internal class might look like the following:

type
 TFreeTheValue = class (TInterfacedObject)
 private
 fObjectToFree: TObject;
 public
 constructor Create(anObjectToFree: TObject);
 destructor Destroy; override;
 end;

constructor TFreeTheValue.Create(
 anObjectToFree: TObject);
begin
 fObjectToFree := anObjectToFree;
end;

destructor TFreeTheValue.Destroy;
begin
 fObjectToFree.Free;
 inherited;
end;

Even better, in the actual example I've declared this as a nested type of the generic
smart pointer type. All we have to do in the smart pointer generic type, to enable
this feature, is to add an interface reference and initialize it with a TFreeTheValue
object referring to the contained object:

type
 TSmartPointer<T: class> = record
 strict private
 FValue: T;
 FFreeTheValue: IInterface;
 function GetValue: T;
 public
 constructor Create(AValue: T); overload;
 property Value: T read GetValue;
 end;

The pseudo-constructor (records don't have real constructors) becomes:

constructor TSmartPointer<T>.Create(AValue: T);
begin
 FValue := AValue;
 FFreeTheValue := TFreeTheValue.Create(FValue);
end;

Marco Cantù, Object Pascal Handbook

14: Generics - 427

Using the Smart Pointer

With this code in place, we can now write the following code in a program without
causing a memory leak:

procedure TFormSmartPointers.btnSmartClick(
 Sender: TObject);
var
 sl: TStringList;
 smartP: TSmartPointer<TStringList>;
begin
 sl := TStringList.Create;
 smartP.Create (sl);
 sl.Add('foo');
 Show ('Count: ' + IntToStr (sl.Count));
end;

At the end of the method the smartP record is disposed, which causes its internal
interfaced object to be destroyed, freeing the TStringList object. Notice that this
disposal takes place even when an exception is raised, so we don't need to protect
our code with a try-finally block.

note In practice, implicit try-finally blocks are being added all over the places by the compiler to
handle the interface within the record, but we don't have to write them (and the compiler is less
likely to forget one).

In the program, I verify that all objects are actually destroyed and there is no mem-
ory leak by setting the global ReportMemoryLeaksOnShutdown to True in the
initialization code. As a counter test, there is a button in the program that causes a
leak, which is caught as the program terminates.

Adding Implicit Conversion

So using the smart pointer record we have been able to remove the need for the
Free call, and hence the need for a try-finally block, but there is still quite some
code to write (and to remember writing). An extension to the smart pointer class is
the inclusion of an Implicit conversion operator, providing the capability to assign
the target object to the smart pointer:

class operator TSmartPointer<T>.
 Implicit(AValue: T): TSmartPointer<T>;
begin
 Result := TSmartPointer<T>.Create(AValue);
end;

Marco Cantù, Object Pascal Handbook

428 - 14: Generics

With this code (and taking advantage of the Value field) we can now write a more
compact version of the code, like:

var
 smartP: TSmartPointer<TStringList>;
begin
 smartP := TStringList.Create;
 smartP.Value.Add('foo');
 Show ('Count: ' + IntToStr (smartP.Value.Count));

As an alternative, we can use a TStringList variable and use a complicated con-
structor to initialize the smart pointer record even without an explicit reference to
it:

var
 sl: TStringList;
begin
 sl := TSmartPointer<TStringList>.
 Create(TStringList.Create).Value;
 sl.Add('foo');
 Show ('Count: ' + IntToStr (sl.Count));

As we've started down this road, we can also define the opposite conversion, and use
the cast notation rather than the Value property:

class operator TSmartPointer<T>.
 Implicit(AValue: T): TSmartPointer<T>;
begin
 Result := TSmartPointer<T>.Create(AValue);
end;

var
 smartP: TSmartPointer<TStringList>;
begin
 smartP := TStringList.Create;
 TStringList(smartP).Add('foo2');

Now, you might also notice that I've always used a pseudo-constructor in the code
above, but this is not needed on a record. All we need is a way to initialize the inter-
nal object, possibly calling its constructor, the first time we use it. We cannot test if
the internal object is Assigned, because records (unlike classes) are not initialized to
zero. However we can perform that test on the interface variable, which is initial-
ized.

Adding Auto-Creation

The extra code of the smart pointer record type is an overloaded Create procedure
(it cannot be a constructor, as parameterless constructors are not legal for records)
and a lazy initialization of the Value property:

Marco Cantù, Object Pascal Handbook

14: Generics - 429

procedure TSmartPointer<T>.Create;
begin
 TSmartPointer<T>.Create (T.Create);
end;

function TSmartPointer<T>.GetValue: T;
begin
 if not Assigned(FFreeTheValue) then
 self := TSmartPointer<T>.Create (T.Create);
 Result := FValue;
end;

With this code we now have many ways to use the smart pointer, including not free-
ing and not even creating it explicitly:

var
 smartP: TSmartPointer<TStringList>;
begin
 smartP.Value.Add('foo');
 Show ('Count: ' + IntToStr (smartP.Value.Count));
end;

The fact that the method above creates a string list and frees it at the end sounds
certainly a big departure from the standard coding model Object Pascal developers
are used to. And this is only one specific scenario for using generics for non collec-
tions code.

The Complete Smart Pointer Code

To end this section, though. Let me list the complete source code of the smart
pointer generic record I've build in several iterations:

type
 TSmartPointer<T: class, constructor> = record
 strict private
 FValue: T;
 FFreeTheValue: IInterface;
 function GetValue: T;
 private
 type
 TFreeTheValue = class (TInterfacedObject)
 private
 fObjectToFree: TObject;
 public
 constructor Create(anObjectToFree: TObject);
 destructor Destroy; override;
 end;
 public
 constructor Create(AValue: T); overload;
 procedure Create; overload;
 class operator Implicit(AValue: T): TSmartPointer<T>;

Marco Cantù, Object Pascal Handbook

430 - 14: Generics

 class operator Implicit(smart: TSmartPointer <T>): T;
 property Value: T read GetValue;
 end;

The complete code and some of the usage patterns mentioned in this section are in
the SmartPointers project. Now, I'm not advocating using this type of code regu-
larly, rather than more standard memory management techniques. The reason for
this section of the book is to highlight the depth of Object Pascal, which makes it
possible to write some very complex and powerful code like the implementation of
smart pointers explained in this section.

Covariant Return Types with Generics

In general in Object Pascal (and most other static object-oriented languages) a
method can return an object of a class but you cannot override it in a derived class
to return a derived class object. This is a rather common practice called “Covariant
Return Type” and explicitly supported by some languages like C++.

Of Animals, Dogs, and Cats

In coding terms, if TDog inherits from TAnimal, I'd want to have the methods:

function TAnimal.Get (name: string): TAnimal;
function TDog.Get (name: string): TDog;

However, in Object Pascal you cannot have virtual functions with a different return
value, nor you can overload on the return type, but only when using different
parameters. Let me show you the complete code of a simple demo. Here are the
three classes involved:

type
 TAnimal = class
 private
 FName: string;
 procedure SetName(const Value: string);
 public
 property Name: string read FName write SetName;
 public
 class function Get (const aName: string): TAnimal;
 function ToString: string; override;
 end;

 TDog = class (TAnimal)

Marco Cantù, Object Pascal Handbook

14: Generics - 431

 end;

 TCat = class (TAnimal)

 end;

The implementation of the two methods is quite simple, once you notice that the
class function is actually used to create new objects, internally calling a constructor.
The reason is I don't want to create a constructor directly is that this is a more gen-
eral technique, in which a method of a class can create objects of other classed (or
class hierarchies). This is the code:

class function TAnimal.Get(const aName: string): TAnimal;
begin
 Result := Create;
 Result.fName := aName;
end;

function TAnimal.ToString: string;
begin
 Result := 'This ' + Copy (ClassName, 2, maxint) +
 ' is called ' + FName;
end;

Now we can use the class by writing the following code, which is what I don't terri-
bly like, given we have to cast back the result to the proper type:

var
 aCat: TCat;
begin
 aCat := TCat.Get('Matisse') as TCat;
 Memo1.Lines.Add (aCat.ToString);
 aCat.Free;

Again, what I'd like to do is to be able to assigned the value returned by TCat.Get to
a reference of the TCat class without an explicit cast. How can we do that?

A Method with a Generic Result

It turns out generics can help us solve the problem. Not generic types, which is the
most commonly used form of generics. But generic methods for non-generic types,
discussed earlier in this chapter. What I can add to the TAnimal class is a method
with a generic type parameter, like:

 class function GetAs<T: class> (const aName: string): T;

This method requires a generic type parameter, which needs to be a class (or
instance type) and returns an object of that type. A sample implementation is here:

class function TAnimal.GetAs<T>(const aName: string): T;
var

Marco Cantù, Object Pascal Handbook

432 - 14: Generics

 res: TAnimal;
begin
 res := Get (aName);
 if res.inheritsFrom (T) then
 Result := T(res)
 else
 Result := nil;
end;

Now we can create an instance and using it omitting the as cast, although we still
have to pass the type as parameter:

var
 aDog: TDog;
begin
 aDog := TDog.GetAs<TDog>('Pluto');
 Memo1.Lines.Add (aDog.ToString);
 aDog.Free;

Returning a Derived Object of a Different
Class

When you return an object of the same class, you can replace this code with a proper
use of constructors. But the use of generics to obtain covariant return types is actu-
ally more flexible. In fact we can use it to return objects of a different class, or
hierarchy of classes:

type
 TAnimalShop = class
 class function GetAs<T: TAnimal, constructor> (
 const aName: string): T;
 end;

note A class like this, used to create objects of a different class (or more than one, depending on the
parameters os status) is generally called a “class factory”.

We can now use the specific class constraint (something impossible in the class
itself) and we have to specify the constructor constraint to be able to create an object
of the given class from within the generic method:

class function TAnimalShop.GetAs<T>(const aName: string): T;
var
 res: TAnimal;
begin
 res := T.Create;
 res.Name := aName;
 if res.inheritsFrom (T) then
 Result := T(res)

Marco Cantù, Object Pascal Handbook

14: Generics - 433

 else
 Result := nil;
end;

Notice that now in the call we don't have to repeat the class type twice:

 aDog := TanimalShop.GetAs<TDog>('Pluto');

Marco Cantù, Object Pascal Handbook

434 - 14: Generics

Marco Cantù, Object Pascal Handbook

15: Anonymous Methods - 435

15: anonymous

methods

The Object Pascal language includes both procedural types (that is, types declaring
pointers to procedures and functions) and method pointers (that is, types declaring
pointers to methods).

note In case you want more information, procedural types were covered in Chapter 4 while events and
method pointer types were described Chapter 10.

Although you might seldom use them directly, these are key features of Object Pas-
cal that every developer works with. In fact, method pointers types are the
foundation for event handlers in components and visual controls: every time you
declare an event handler, even a simple Button1Click you are in fact declaring a
method that will be connected to an event (the OnClick event, in this case) using a
method pointer.

Anonymous methods extend this feature by letting you pass the actual code of a
method as a parameter, rather than the name of a method defined elsewhere. This
is not the only difference, though. What makes anonymous methods very different
from other techniques is the way they manage the lifetime of local variables.

Marco Cantù, Object Pascal Handbook

436 - 15: Anonymous Methods

The definition above matches with a feature called closures in many other lan-
guages, for example JavaScript. If Object Pascal anonymous methods are in fact
closures, how come the language refers to them using a different term? The reason
lies in the fact both terms are used by different languages and that the C++ compiler
produced by Embarcadero uses the term closures for what Object Pascal calls event
handlers (so having a different feature with the same name would have been con-
fusing).

Anonymous methods have been around in different forms and with different names
for many years in quite a few programming languages, most notably dynamic lan-
guages. I've had extensive experience with closures in JavaScript, particularly with
the jQuery library and AJAX calls. The corresponding feature in C# is called an
anonymous delegate.

But here I don't want to devote too much time comparing closures and related tech-
niques in the various programming languages, but rather describe in detail how
they work in Object Pascal.

note From a very high perspective, generics allows code to be code parametrized for a type, anonymous
methods allows code to be parametrized for a method.

Syntax and Semantics of Anonymous
Methods

An anonymous method in Object Pascal is a mechanism to create a method value in
an expression context. A rather cryptic definition, but a rather precise one given it
underlines the key difference from method pointers, the expression context. Before
we get to this, though, let me start from the beginning with a very simple code
example (included in the AnonymFirst application project along with most other
code snippets in this section).

This is the declaration of an anonymous method type, something you need to pro-
vide given that Object Pascal is a strongly typed language:

type
 TIntProc = reference to procedure (n: Integer);

This is different from a method reference type only in the keywords being used for
the declaration:

type

Marco Cantù, Object Pascal Handbook

15: Anonymous Methods - 437

 TIntMethod = procedure (n: Integer) of object;

An Anonymous Method Variable

Once you have an anonymous method type you can, in the simplest cases, declare a
variable of this type, assign a type-compatible anonymous method, and call the
method through the variable:

procedure TFormAnonymFirst.btnSimpleVarClick(
 Sender: TObject);
var
 anIntProc: TIntProc;
begin
 anIntProc :=
 procedure (n: Integer)
 begin
 Memo1.Lines.Add (IntToStr (n));
 end;
 anIntProc (22);
end;

Notice the syntax used to assign an actual procedure, with in-place code, to the vari-
able.

An Anonymous Method Parameter

As a more interesting example (with even more surprising syntax), we can pass an
anonymous method as parameter to a function. Suppose you have a function taking
an anonymous method parameter:

procedure CallTwice (value: Integer;
 anIntProc: TIntProc);
begin
 anIntProc (value);
 Inc (value);
 anIntProc (value);
end;

The function calls the method passed as parameter twice with two consecutive inte-
gers values, the one passed as parameter and the following one. You call the
function by passing an actual anonymous method to it, with directly in-place code
that looks surprising:

procedure TFormAnonymFirst.btnProcParamClick(
 Sender: TObject);
begin
 CallTwice (48,

Marco Cantù, Object Pascal Handbook

438 - 15: Anonymous Methods

 procedure (n: Integer)
 begin
 Show (IntToHex (n, 4));
 end);
 CallTwice (100,
 procedure (n: Integer)
 begin
 Show (FloatToStr(Sqrt(n)));
 end);
end;

From the syntax point of view notice the procedure passed as parameter within
parentheses and not terminated by a semicolon. The actual effect of the code is to
call the IntToHex with 48 and 49 and the FloatToStr on the square root of 100 and
101, producing the following output:

0030
0031
10
10.0498756211209

Using Local Variables

We could have achieved the same effect using method pointers albeit with a differ-
ent and less readable syntax. What makes anonymous method clearly different is
the way they can refer to local variables of the calling method. Consider the follow-
ing code:

procedure TFormAnonymFirst.btnLocalValClick(
 Sender: TObject);
var
 aNumber: Integer;
begin
 aNumber := 0;
 CallTwice (10,
 procedure (n: Integer)
 begin
 Inc (aNumber, n);
 end);
 Show (IntToStr (aNumber));
end;

Here the method, still passed to the CallTwice procedure, uses the local parameter
n, but also a local variable from the context from which it was called, aNumber.
What's the effect? The two calls of the anonymous method will modify the local vari-
able, adding the parameter to it, 10 the first time and 11 the second. The final value
of aNumber will be 21.

Marco Cantù, Object Pascal Handbook

15: Anonymous Methods - 439

Extending the Lifetime of Local Variables

The previous example shows an interesting effect, but with a sequence of nested
function calls, the fact you can use the local variable isn't that surprising. The power
of anonymous methods, however, lies in the fact they can use a local variable and
also extend its lifetime until needed. An example will prove the point more than a
lengthly explanation.

note In slightly more technical details, anonymous methods copy the variables and parameters they use
to the heap when they are created, and keep them alive as long as the specific instance of the
anonymous method.

I've added (using class completion) to the TFormAnonymFirst form class of the
AnonymFirst application project a property of an anonymous method pointer type
(well, actually the same anonymous method pointer type I've used in all of the code
of the project):

 private
 FAnonMeth: TIntProc;
 procedure SetAnonMeth(const Value: TIntProc);
 public
 property AnonMeth: TIntProc
 read FAnonMeth write SetAnonMeth;

Then I've added two more buttons to the form of the program. The first saves the
property an anonymous method that uses a local variable (more or less like in the
previous btnLocalValClick method):

procedure TFormAnonymFirst.btnStoreClick(
 Sender: TObject);
var
 aNumber: Integer;
begin
 aNumber := 3;
 AnonMeth :=
 procedure (n: Integer)
 begin
 Inc (aNumber, n);
 Show (IntToStr (aNumber));
 end;
end;

When this method executes the anonymous method is not executed, only stored.
The local variable aNumber is initialized to three, is not modified, goes out of local
scope (as the method terminates), and is displaced. At least, that is what you'd
expect from standard Object Pascal code.

Marco Cantù, Object Pascal Handbook

440 - 15: Anonymous Methods

The second button I added to the form for this specific step calls the anonymous
method stored in the AnonMeth property:

procedure TFormAnonymFirst.btnCallClick(Sender: TObject);
begin
 if Assigned (AnonMeth) then
 begin
 CallTwice (2, AnonMeth);
 end;
end;

When this code is executed, it calls an anonymous method that uses the local vari-
able aNumber of a method that's not on the stack any more. However, since
anonymous methods capture their execution context the variable is still there and
can be used as long as that given instance of the anonymous method (that is, a refer-
ence to the method) is around.

As a further proof, do the following. Press the Store button once, the Call button
two times and you'll see that the same captured variable is being used:

5
8
10
13

note The reason for this sequence is that the value starts at 3, each call to CallTwice passed its param-
eter to the anonymous methods a first time (that is 2) and then a second time after incrementing it
(that is, the second time it passes 3).

Now press Store once more and press Call again. What happens, why is the value
of the local variable reset? By assigning a new anonymous method instance, the old
anonymous method is deleted (along with its own execution context) and a new exe-
cution context is capture, including a new instance of the local variable. The full
sequence Store – Call – Call – Store – Call produces:

5
8
10
13
5
8

It is the implication of this behavior, resembling what some other languages do, that
makes anonymous methods an extremely powerful language feature, which you can
use to implement something that simply wasn't possible in the past.

Marco Cantù, Object Pascal Handbook

15: Anonymous Methods - 441

Anonymous Methods Behind the
Scenes

If the variable capture feature is one of the most relevant for anonymous methods,
there are a few more techniques that are worth looking at, before we focus on some
real world examples. Still, if you are new to anonymous methods, you might want
to skip this rather advanced section and come back during a second read.

The (Potentially) Missing Parenthesis

Notice that in the code above I used the AnonMeth symbol to refer to the anonymous
method, not to invoke it. For invoking it, I should have typed:

AnonMeth (2)

The difference is clear; I need to pass a proper parameter to invoke the method.
Things are slightly more confusing with parameterless anonymous methods. If you
declare:

type
 TAnyProc = reference to procedure;
var
 AnyProc: TAnyProc;

The call to AnyProc must be followed by the empty parentheses, otherwise the com-
piler thinks you are trying to get the method (its address) rather than call it:

AnyProc ();

Something similar happens when you call a function that returns an anonymous
method, as in the following case taken from the usual AnonymFirst application
project:

function GetShowMethod: TIntProc;
var
 x: Integer;
begin
 x := Random (100);
 ShowMessage ('New x is ' + IntToStr (x));
 Result :=
 procedure (n: Integer)
 begin
 x := x + n;
 ShowMessage (IntToStr (x));
 end;
end;

Marco Cantù, Object Pascal Handbook

442 - 15: Anonymous Methods

Now the question is, how do you call it? If you simply call

 GetShowMethod;

It compiles and executes, but all it does is call the anonymous method assignment
code, throwing away the anonymous method returned by the function.

How do you call the actual anonymous method passing a parameter to it? One
option is to use a temporary anonymous method variable:

var
 ip: TIntProc;
begin
 ip := GetShowMethod();
 ip (3);

Notice in this case the parentheses after the GetShowMethod call. If you omit them (a
standard Pascal practice) you'll get the following error:

E2010 Incompatible types: 'TIntProc' and 'Procedure'

Without the parentheses the compiler thinks you want to assign the GetShowMethod
function itself, and not its result to the ip method pointer. Still, using a temporary
variable might not be the best option in this case, as is makes the code unnaturally
complex. A simple call

 GetShowMethod(3);

won't compile, as you cannot pass a parameter to the method. You need to add the
empty parenthesis to the first call, and the Integer parameter to the resulting anony-
mous method. Oddly enough, you can write:

 GetShowMethod()(3);

An alternative solution is to use the internal implementation of anonymous meth-
ods, and call the low-level Invoke method that gets added by the compiler (in which
case you can omit the empty parenthesis):

 GetShowMethod.Invoke (3);

Anonymous Methods Implementation

What is this Invoke method? What happens behind the scenes in the implementa-
tion of anonymous methods? The actual code generated by the compiler for
anonymous methods is based on interfaces, with a single invocation method called
Invoke, plus the usual reference counting support (that's useful to determine the
lifetime of anonymous methods and the context they capture).

You can see those interface methods in the editor if you use code completion, as
shown in Figure 15.1.

Marco Cantù, Object Pascal Handbook

15: Anonymous Methods - 443

Figure 15.1:
Code completion for
anonymous methods
exposes the internal
Invoke method.

Getting details of the internals is probably very complicated and of limited worth.
Suffice to say that the implementation is very efficient, in terms of speed, and
requires about 500 extra bytes for each anonymous method.

In other words, a method reference in Object Pascal is implemented with a special
single method interface, with a compiler-generated method having the same signa-
ture as the method reference it is implementing. The interface takes advantage of
reference counting for its automatic disposal.

note Although practically the interface used for an anonymous method looks like any other interface,
the compiler distinguishes between these special interfaces so you cannot mix them in code.

Beside this hidden interface, for each invocation of an anonymous method the com-
piler creates a hidden object that has the method implementation and the data
required to capture the invocation context. That's how you get a new set of captured
variables for each call of the method.

Ready To Use Reference Types

Every time you use an anonymous method as a parameter you need to define a cor-
responding reference pointer data type. To avoid the proliferation of local types,
Object Pascal provides a number of ready-to-use reference pointer types in the Sys-
tem.SysUtils unit. As you can see in the code snippet below, most of these type
definitions use parameterized types, so that with a single generic declaration you
have a different reference pointer type for each possible data type:

type
 TProc = reference to procedure;
 TProc<T> = reference to procedure (Arg1: T);
 TProc<T1,T2> = reference to procedure (
 Arg1: T1; Arg2: T2);
 TProc<T1,T2,T3> = reference to procedure (
 Arg1: T1; Arg2: T2; Arg3: T3);

Marco Cantù, Object Pascal Handbook

444 - 15: Anonymous Methods

 TProc<T1,T2,T3,T4> = reference to procedure (
 Arg1: T1; Arg2: T2; Arg3: T3; Arg4: T4);

Using these declarations, you can define procedures that take anonymous method
parameters like in the following:

procedure UseCode (proc: TProc);
function DoThis (proc: TProc): string;
function DoThat (procInt: TProc<Integer>): string;

In the first and second case you pass a parameterless anonymous method, in the
third you pass a method with a single Integer parameter:

UseCode (
 procedure
 begin
 ...
 end);
strRes := DoThat (
 procedure (I: Integer)
 begin
 ...
 end);

Similarly the System.SyUtils unit defines a set of anonymous method types with a
generic return value:

type
 TFunc<TResult> = reference to function: TResult;
 TFunc<T,TResult> = reference to function (
 Arg1: T): TResult;
 TFunc<T1,T2,TResult> = reference to function (
 Arg1: T1; Arg2: T2): TResult;
 TFunc<T1,T2,T3,TResult> = reference to function (
 Arg1: T1; Arg2: T2; Arg3: T3): TResult;
 TFunc<T1,T2,T3,T4,TResult> = reference to function (
 Arg1: T1; Arg2: T2; Arg3: T3; Arg4: T4): TResult;
 TPredicate<T> = reference to function (
 Arg1: T): Boolean;

These definitions are very broad, as you can use countless combinations of data
types for up to four parameters and a return type. The last definition is very similar
to the second, but corresponds to a specific case that is very frequent, a function tak-
ing a generic parameter and returning a Boolean.

Marco Cantù, Object Pascal Handbook

15: Anonymous Methods - 445

Anonymous Methods in the Real
World

At first sight, it is not easy to fully understand the power of anonymous methods
and the scenarios that can benefit from using them. That's why rather than coming
out with more convoluted examples covering the language, I decided to focus on
some that have a practical impact and provide starting points for further explo-
ration.

Anonymous Event Handlers

One of the distinguishing features of Object Pascal has been its implementation of
event handlers using method pointers. Anonymous methods can be used to attach a
new behavior to an event without having to declare a separate method and captur-
ing the method's execution context. This avoids having to add extra fields to a form
to pass parameters from one method to another.

As an example (the AnonButton application project), I've added an anonymous click
event to a button, declaring a proper method pointer type and adding a new event
handler to a custom button class (defined using an interposer class):

type
 TAnonNotif = reference to procedure (Sender: TObject);

 // interposer class
 TButton = class (FMX.StdCtrls.TButton)
 private
 FAnonClick: TAnonNotif;
 procedure SetAnonClick(const Value: TAnonNotif);
 public
 procedure Click; override;
 public
 property AnonClick: TAnonNotif
 read FAnonClick write SetAnonClick;
 end;

Marco Cantù, Object Pascal Handbook

446 - 15: Anonymous Methods

note An interposer class is a derived class having the same name as its base class. Having two classes
with the same name is possible because the two classes are in different units, so their full name
(unitname.classname) is different. Declaring an interposer class can be handy as you can simply
place a Button control on the form and attach extra behavior to it, without having to install a new
component in the IDE and replace the controls on your form with the new type. The only trick you
have to remember is that if the definition of the interposer class is in a separate unit (not the form
unit as in this simple example), that unit has to be listed in the uses statement after the unit defin-
ing the base class.

The code of this class is fairly simple, as the setter method saves the new pointer
and the Click method calls it before doing the standard processing (that is, calling
the OnClick event handler if available):

procedure TButton.SetAnonClick(const Value: TAnonNotif);
begin
 FAnonClick := Value;
end;

procedure TButton.Click;
begin
 if Assigned (FAnonClick) then
 FAnonClick (self)
 inherited;
end;

How can you use this new event handler? Basically you can assign an anonymous
method to it:

procedure TFormAnonButton.btnAssignClick(
 Sender: TObject);
begin
 btnInvoke.AnonClick :=
 procedure (Sender: TObject)
 begin
 Show ((Sender as TButton).Text);
 end;
end;

Now this looks rather pointless, as the same effect could easily be achieved using a
standard event handler method. The following, instead, starts making a difference,
as the anonymous method captures a reference to the component that assigned the
event handler, by referencing the Sender parameter.

This can be done after temporarily assigning it to a local variable, as the Sender
parameter of the anonymous method hides the btnKeepRefClick method's Sender
parameter:

procedure TFormAnonButton.btnKeepRefClick(
 Sender: TObject);
var
 aCompRef: TComponent;

Marco Cantù, Object Pascal Handbook

15: Anonymous Methods - 447

begin
 aCompRef := Sender as TComponent;
 btnInvoke.AnonClick :=
 procedure (Sender: TObject)
 begin
 Show ((Sender as TButton).Text +
 ' assigned by ' + aCompRef.Name);
 end;
end;

As you press the btnInvoke button, you'll see its caption along with the name of the
component that assigned the anonymous method handler.

Timing Anonymous Methods

Developers frequently add timing code to existing routines to compare their relative
speed. Supposing you have two code fragments and you want to compare their
speed by executing them a few million times, you could write the following which is
taken from the LargeString application project of Chapter 6:

procedure TForm1.Button1Click(Sender: TObject);
var
 str1, str2: string;
 I: Integer;
 t1: TStopwatch;
begin
 str1 := 'Marco ';
 str2 := 'Cantu ';

 t1 := TStopwatch.StartNew;
 for I := 1 to MaxLoop do
 str1 := str1 + str2;

 t1.Stop;
 Show('Length: ' + str1.Length.ToString);
 Show('Concatenation: ' + t1.ElapsedMilliseconds.ToString);
end;

A second method has similar code but used the TStringBuilder class rather than
plain concatenation. Now we can take advantage of anonymous methods to create a
timing skeleton and pass the specific code as parameter, as I've done in an updated
version of the code, in the AnonLargeStrings application project.

Rather than repeating the timing code over and over, you can write a function with
the timing code that would invoke the code snippet through a parameterless anony-
mous method:

function TimeCode (nLoops: Integer; proc: TProc): string;
var
 t1: TStopwatch;

Marco Cantù, Object Pascal Handbook

448 - 15: Anonymous Methods

 I: Integer;
begin
 t1 := TStopwatch.StartNew;
 for I := 1 to nLoops do
 proc;
 t1.Stop;
 Result := t1.ElapsedMilliseconds.toString;
end;

procedure TForm1.Button1Click(Sender: TObject);
var
 str1, str2: string;
begin
 str1 := 'Marco ';
 str2 := 'Cantu ';
 Show ('Concatenation: ' +
 TimeCode (MaxLoop,
 procedure ()
 begin
 str1 := str1 + str2;
 end));
 Show('Length: ' + str1.Length.ToString);
end;

Notice, though, that if you execute the standard version and the one based on
anonymous methods you'll get a slightly different output, the anonymous method
version sees a penalty of roughly 10%. The reason is that rather than directly execut-
ing the local code, the program has to make a virtual call to the anonymous method
implementation. As this difference is consistent, the testing code makes perfect
sense anyway.

However, if you need to squeeze performance from your code, using anonymous
methods won't be as fast as directly writing the code, with using a direct function.
Using a non-virtual method pointer would probably be somewhere in between the
two in terms of performance.

Threads Synchronization

In multi-threaded applications that need to update the user interface, you cannot
access properties of visual components (or in memory-objects) that are part of the
global thread without a synchronization mechanism. The visual component libraries
for Object Pascal, in fact, aren't thread-safe (as is true for most user-interface
libraries). Two threads accessing an object at the same time could compromise its
state.

The classic solution offered by the TThread class in Object Pascal is to call a special
method, Synchronize, passing as a parameter the reference to another method, the

Marco Cantù, Object Pascal Handbook

15: Anonymous Methods - 449

one to be executed safely. This second method cannot have parameters, so it is com-
mon practice to add extra fields to the thread class to pass the information from one
method to another.

As a practical example, in the book Mastering Delphi 2005 I wrote a WebFind appli-
cation (a program that runs searches on Google via HTTP and extracts the resulting
links from the HTML of the page), with the following thread class:

type
 TFindWebThread = class(TThread)
 protected
 Addr, Text, Status: string;
 procedure Execute; override;
 procedure AddToList;
 procedure ShowStatus;
 procedure GrabHtml;
 procedure HtmlToList;
 procedure HttpWork (Sender: TObject;
 AWorkMode: TWorkMode; AWorkCount: Int64);
 public
 strUrl: string;
 strRead: string;
 end;

The three protected string fields and some of the extra methods have been intro-
duced to support synchronization with the user interface. For example, the
HttpWork event handler hooked to an event of an internal IdHttp object (an Indy
component supporting the client side of the HTTP protocol), used to have the fol-
lowing code, that called the ShowStatus method:

procedure TFindWebThread.HttpWork(Sender: TObject;
 AWorkMode: TWorkMode; AWorkCount: Int64);
begin
 Status := 'Received ' + IntToStr (AWorkCount) +
 ' for ' + strUrl;
 Synchronize (ShowStatus);
end;

procedure TFindWebThread.ShowStatus;
begin
 Form1.StatusBar1.SimpleText := Status;
end;

The Synchronize method of the Object Pascal RTL has two different overloaded def-
initions:

type
 TThreadMethod = procedure of object;
 TThreadProcedure = reference to procedure;

 TThread = class
 ...
 procedure Synchronize(AMethod: TThreadMethod); overload;

Marco Cantù, Object Pascal Handbook

450 - 15: Anonymous Methods

 procedure Synchronize(AThreadProc: TThreadProcedure); overload;

For this reason we can remove the Status text field and the ShowStatus function,
and rewrite the HttpWork event handler using the new version of Synchronize and
an anonymous method:

procedure TFindWebThreadAnon.HttpWork(Sender: TObject;
 AWorkMode: TWorkMode; AWorkCount: Int64);
begin
 Synchronize (
 procedure
 begin
 Form1.StatusBar1.SimpleText :=
 'Received ' + IntToStr (AWorkCount) + ' for ' + strUrl;
 end);
end;

Using the same approach throughout the code of the class, the thread class becomes
the following (you can find both thread classes in the version of the WebFind applica-
tion project that comes with the source code of this book):

type
 TFindWebThreadAnon = class(TThread)
 protected
 procedure Execute; override;
 procedure GrabHtml;
 procedure HtmlToList;
 procedure HttpWork (Sender: TObject;
 AWorkMode: TWorkMode; AWorkCount: Int64);
 public
 strUrl: string;
 strRead: string;
 end;

Using anonymous methods simplifies the code needed for thread synchronization,
as you can avoid temporary fields.

note Anonymous methods have a lot of relationships with threading, because a thread is used to run
some code and anonymous method represent code. This is why there is support in the TThread
class to use them, but also in the Parallel Programming Library (in TParallel.For and to define a
TTask). Given examining multi-threading goes well beyond this chapter, I won't add more exam-
ples in this direction. Still, I'm going to use another thread in the next example, because this is
most often a requirement when making an HTTP call.

AJAX in Object Pascal

The last example in this section, the AnonAjax application demo, is one of my
favorite examples of anonymous methods (even if a bit extreme). The reason is that

Marco Cantù, Object Pascal Handbook

15: Anonymous Methods - 451

I learned using closures (or anonymous methods) in JavaScript, while writing AJAX
applications with the jQuery library.

note The AJAX acronym stands for Asynchronous JavaScript XML, as this was originally the format
used in web services calls done from the browser. As this technology became more popular and
widespread, and web services moved to the REST architecture and the JSON format, the term
AJAX has faded away a bit, in favor of REST.

The AjaxCall global function spawns a thread, passing to the thread an anonymous
method to execute on completion. The function is just a wrapper around the thread
constructor:

type
 TAjaxCallback = reference to procedure (
 ResponseContent: TStringStream);

procedure AjaxCall (const strUrl: string;
 ajaxCallback: TAjaxCallback);
begin
 TAjaxThread.Create (strUrl, ajaxCallback);
end;

All of the code is in the TAjaxThread class, a thread class with an internal Indy
HTTP client component used to access to a given URL, asynchronously:

type
 TAjaxThread = class (TThread)
 private
 fIdHttp: TIdHttp;
 fURL: string;
 fAjaxCallback: TAjaxCallback;
 protected
 procedure Execute; override;
 public
 constructor Create (const strUrl: string;
 ajaxCallback: TAjaxCallback);
 destructor Destroy; override;
 end;

The constructor does some initialization, copying its parameters to the correspond-
ing local fields of the thread class and creating the fIdHttp object. The real meat of
the class is in its Execute method, which does the HTTP request, saving the result in
a stream that is later reset and passed to the callback function – the anonymous
method:

procedure TAjaxThread.Execute;
var
 aResponseContent: TStringStream;
begin
 aResponseContent := TStringStream.Create;
 try

Marco Cantù, Object Pascal Handbook

452 - 15: Anonymous Methods

 fIdHttp.Get (fURL, aResponseContent);
 aResponseContent.Position := 0;
 fAjaxCallback (aResponseContent);
 finally
 aResponseContent.Free;
 end;
end;

As an example of its usage, the AnonAjax application project has a button used to
copy the content of a Web page to a Memo control (adding the requested URL at the
beginning):

procedure TFormAnonAjax.btnReadClick(Sender: TObject);
begin
 AjaxCall (edUrl.Text,
 procedure (aResponseContent: TStringStream)
 begin
 Memo1.Lines.Text := aResponseContent.DataString;
 Memo1.Lines.Insert (0, 'From URL: ' + edUrl.Text);
 end);
end;

After the HTTP request has finished, you can do any sort of processing you want on
it.

Another example would be to extract links from the HTML file (in a way that resem-
bles the WebFind application covered earlier). Again, to make this function flexible,
it takes as a parameter the anonymous method to execute for each link:

type
 TLinkCallback = reference to procedure (
 const strLink: string);

procedure ExtractLinks (strData: string;
 procLink: TLinkCallback);
var
 strAddr: string;
 nBegin, nEnd: Integer;
begin
 strData := LowerCase (strData);
 nBegin := 1;
 repeat
 nBegin := PosEx ('href="http', strData, nBegin);
 if nBegin <> 0 then
 begin
 // find the end of the HTTP reference
 nBegin := nBegin + 6;
 nEnd := PosEx ('"', strData, nBegin);
 strAddr := Copy (strData, nBegin, nEnd - nBegin);
 // move on
 nBegin := nEnd + 1;
 // execute anon method
 procLink (strAddr)
 end;

Marco Cantù, Object Pascal Handbook

15: Anonymous Methods - 453

 until nBegin = 0;
end;

If you apply this function to the result of an AJAX call and provide a further method
for processing, you end up with two nested anonymous method calls, like in the sec-
ond button of the AnonAjax application project:

procedure TFormAnonAjax.btnLinksClick(Sender: TObject);
begin
 AjaxCall (edUrl.Text,
 procedure (aResponseContent: TStringStream)
 begin
 ExtractLinks(aResponseContent.DataString,
 procedure (const aUrl: string)
 begin
 Memo1.Lines.Add (aUrl + ' in ' + edUrl.Text);
 end);
 end);
end;

In this case the Memo control will receive a collection of links, instead of the HTML
of the returned page. A variation to the link extraction routine above would be an
image extraction routine. The ExtractImages function grabs the source (src) of the
img tags of the HTML file returned, and calls another TLinkCallback-compatible
anonymous method (see the source code for the function details).

Now you can envision opening an HTML page (with the AjaxCall function), extract
the image links, and use AjaxCall again to grab the actual images. This means using
a triple-nested closure, in a coding structure that some Object Pascal programmers
might find unreadable (it takes a while to get used to it!), but is certainly very pow-
erful and expressive:

procedure TFormAnonAjax.btnImagesClick(Sender: TObject);
var
 nHit: Integer;
begin
 nHit := 0;
 AjaxCall (edUrl.Text,
 procedure (aResponseContent: TStringStream)
 begin
 ExtractImages(aResponseContent.DataString,
 procedure (const aUrl: string)
 begin
 Inc (nHit);
 Memo1.Lines.Add (IntToStr (nHit) + '.' +
 aUrl + ' in ' + edUrl.Text);
 if nHit = 1 then // load the first
 begin
 AjaxCall (aUrl,
 procedure (aResponseContent: TStringStream)
 begin
 // load image of the current type only

Marco Cantù, Object Pascal Handbook

454 - 15: Anonymous Methods

 Image1.Picture.Graphic.
 LoadFromStream(aResponseContent);
 end);
 end;
 end);
 end);
end;

note This code snippet was the topic of a blog post of mine, “Anonymous, Anonymous, Anonymous” of
September 2008, which attracted some comments, as you can see on:
http://blog.marcocantu.com/blog/anonymous_3.html.

Beside the fact that the graphic only works in the case where you are loading a file
with the same format as the one already in the Image component, the code and its
result are both impressive.

Notice in particular the numbering sequence, based on the capture of the nHit local
variable. What happens if you press the button twice, in a fast sequence? Each of the
anonymous methods will get a different copy of the nHit counter, and they might
potentially be displayed out of sequence in the list, with the second thread starting
to produce its output before the first.

Marco Cantù, Object Pascal Handbook

16: Reflection and Attributes - 455

16: reflection

and attributes

Traditionally, compilers of strongly, statically typed languages, such as Pascal, pro-
vided little or no information about the available types at runtime. All the
information about data types was visible only during the compilation phase.

The first version of Object Pascal broke with this tradition, by providing run time
information for properties and other class members marked with a specific com-
piler directive, published. This feature was enabled for classes compiled with a
specific setting {$M+} and it is the foundation of the streaming mechanism behind
DFM files of the VCL (and FMX files of the FireMonkey library) and the way you
work with the form and other visual designers. When it was first made available in
Delphi 1, this feature was a completely new idea, which later other development
tools adopted and extended it in several ways.

First, there were extensions to the type system (available only in Object Pascal) to
account for method discovery and dynamic invocation in COM. This is still sup-
ported in Object Pascal by dispatch ID, applying methods to variants, and other
COM-related features. Eventually COM support in Object Pascal was extended with

Marco Cantù, Object Pascal Handbook

456 - 16: Reflection and Attributes

its own flavor of run time type information, but this is a topic well beyond the scope
of a language book.

The advent of managed environments, such as Java and .NET, brought forward a
very extensive form of run time type information, with detailed RTTI bound by the
compiler to the executable modules and available for discovery by programs using
those modules. This has the drawback of unveiling some of the program internals
and of increasing the size of the modules, but it brings along new programming
models that combine some of the flexibility of dynamic languages with the solid
structure and the speed of strongly types ones.

Whether you like it or not (and this is indeed was the subject of intense debate at
the time this feature was introduced) Object Pascal is slowly moving in the same
direction, and the adoption of an extensive form of RTTI marks a very significant
step in that direction. As we'll see, you can opt out of the RTTI, but if you don't you
can leverage some extra power in your applications.

The topic is far from simple, so I will proceed in steps. We'll first focus on the new
extended RTTI that's built into the compiler and the new classes of the Rtti unit
that you can use to explore it. Second, I'll look at the new TValue structure and
dynamic invocation. Third, I'll introduce custom attributes, a feature that parallels
its .NET counterpart and let's you extend the RTTI information generated by the
compiler. Only in the last part of the chapter will I try to get back to the reasons
behind the extended RTTI and look at practical examples of its use.

Extended RTTI

The Object Pascal compiler generates by default a lot of extended RTTI information.
This run time information includes all types, including classes and all other user
defined types as well as the core data types predefined by the compiler and covers
published fields as well as public ones, even protected and private elements. This is
needed to be able to delve into the internal structure of any object.

A First Example

Before we look into the information generated by the compiler and the various tech-
niques for accessing them, let me jump towards the conclusion and show you what
can be done using RTTI. The specific example is very minimal and could have been

Marco Cantù, Object Pascal Handbook

16: Reflection and Attributes - 457

written with the older RTTI, but it should give you an idea of what I'm talking about
(also considering that not all Object Pascal developers used the traditional RTTI
explicitly).

Suppose you have a form with a button, like in the RttiIntro application project.
You can write the following code to read the value of the control's Text property:

uses
 Rtti;

procedure TFormRttiIntro.btnInfoClick(Sender: TObject);
var
 context: TRttiContext;
begin
 Show (context.
 GetType(TButton).
 GetProperty('Text').
 GetValue(Sender).ToString);
end;

The code uses the TRttiContext record to refer to information about the TButton
type, from this type information to the RTTI data about a property, and this prop-
erty data is used to refer to the actual value of the property, which is converted into
a string. If you are wondering how this works, keep reading. My point here is that
this approach can now be used not only to access a property dynamically, but also to
read the values of fields, including private fields.

We can also change the value of a property, as the second button of the RttiIntro
application project shows:

procedure TFormRttiIntro.btnChangeClick(Sender: TObject);
var
 context: TRttiContext;
 aProp: TRttiProperty;
begin
 aProp := context.GetType(TButton).GetProperty('Text');
 aProp.SetValue(btnChange, StringOfChar (
 '*', random (10) + 1));
end;

This code replaces the Text with a random number of *s. The difference from the
code above is that it has a temporary local variable referring to the RTTI informa-
tion for the property. Now that you have an idea what we are into, let's start from
the beginning by checking the extended RTTI information generated by the com-
piler.

Marco Cantù, Object Pascal Handbook

458 - 16: Reflection and Attributes

Compiler Generated Information

There is nothing you have to do to let the compiler add this extra information to
your executable program (whatever its kind: application, library, package...). Just
open a project and compile it. By default, the compiler generates Extended RTTI for
all fields (including private ones) and for public and published methods and proper-
ties. You might be surprised by the fact that you get RTTI information for private
fields, but this is required for dynamic operations like binary object serialization
and tracing objects on the heap.

You can control the Extended RTTI generation according to a matrix of settings: On
one axis you have the visibility and on the other the kind of member. The following
table depicts the system default:

Field Method Property
Private x

Protected x
Public x x x

Published x x x

Technically, the four visibility settings are indicated by using the following set type,
declared in the System unit:

type
 TVisibilityClasses = set of (vcPrivate,
 vcProtected, vcPublic, vcPublished);

There are some ready to use constant values for this set indicating the default RTTI
visibility settings applied to TObject and inherited by all other classes by default:

const
 DefaultMethodRttiVisibility = [vcPublic, vcPublished];
 DefaultFieldRttiVisibility = [vcPrivate..vcPublished];
 DefaultPropertyRttiVisibility = [vcPublic, vcPublished];

The information produced by the compiler is controlled by a new directive, $RTTI,
which has a status indicating if the setting is for the given type or also for its descen-
dants (EXPLICIT or INHERITED) followed by three specifiers to set the visibility for
methods, fields, and properties. The default applied in the System unit is:

{$RTTI INHERIT
 METHODS(DefaultMethodRttiVisibility)
 FIELDS(DefaultFieldRttiVisibility)
 PROPERTIES(DefaultPropertyRttiVisibility)}

Marco Cantù, Object Pascal Handbook

16: Reflection and Attributes - 459

To completely disable the generation of extended RTTI for all of the members of
your classes you can use the following directive:

{$RTTI EXPLICIT METHODS([]) FIELDS([]) PROPERTIES([])}

note You cannot place the RTTI directive before the unit declaration, as it happens for other compiler
directives, because it depends on settings defined in the System unit. If you do so, you'll receive an
internal error message, which is not particularly intuitive. In any case, just move it after the unit
statement.

When using this setting, consider it will be applied only to your code and a complete
removal is not possible, as the RTTI information for the RTL and other library
classes is already compiled into the corresponding DCUs and packages. Keep also in
mind that the $RTTI directive doesn't cause any change on the traditional RTTI gen-
erated for published types: This is still produced regardless of the $RTTI directive.

note The RTTI processing classes, available in the System.Rtti unit and covered in the coming section,
hook to the traditional RTTI and its PTypeInfo structure.

What you can do with this directive is stop the Extended RTTI being generated for
your own classes. At the opposite end of the scale, you can also increase the amount
of RTTI being generated, including private and protected methods and properties, if
you wish (although it doesn't make a lot of sense).

The obvious effect of adding Extended RTTI information to an executable file is that
the file will grow larger (which has the main drawback of a larger file to distribute,
as the extra loading time and memory footprint is not so relevant). Now you can
remove the RTTI from the units of your program, and this might have a positive
effect... if you decide you don't want to use RTTI in your code. RTTI is a powerful
technique, as you'll see in this chapter, and in most cases it is worth the extra exe-
cutable size.

Weak and Strong Types Linking

What else could you do to reduce the size of the program? There is actually some-
thing you can do, even if its effect won't be big, it will be noticeable.

When evaluating the RTTI information available in the executable file, consider that
what the compiler adds, the linker might remove. By default, classes and method
not compiled in the program will not get the Extended RTTI (which would be quite
useless), as they don't get the basic RTTI either. At the opposite end of the scale, if

Marco Cantù, Object Pascal Handbook

460 - 16: Reflection and Attributes

you want all Extended RTTI to be included and working, you need to link in even
classes and methods you don't explicitly refer to in your code.

There are two compiler directives you can use to control the information being
linked into the executable. The first, which is fully documented, is the $Weak-
LinkRTTI directive. By turning it on, for types not used in the program, both the
type itself and its RTTI information will be removed from the final executable.

Alternatively, you can force the inclusion of all types and their Extended RTTI using
the $StrongLinkTypes directive. The effect on many programs is dramatic, with
almost a two fold increase in the program size.

The RTTI Unit

If the generation of extended RTTI for all types is the first pillar for Reflection in
Object Pascal, the second pillar is the ability to navigate this information in an easy
and high level way, thanks to the System.Rtti unit. The third pillar, as we'll see
later, is the support for custom attributes. But let me proceed one step at a time.

Traditionally, Object Pascal applications could (and still can) use the functions of
the System.TypInfo unit to access the “published” run time type information. This
unit defines several low-level data structures and functions (all based on pointers
and records) with a couple of higher level routines to make things a little easier.

The Rtti unit, instead, makes it very easy to work with the extended RTTI, provid-
ing a set of classes with proper methods and properties. To access the various
objects, the entry point is the TRttiContext record structure, which has four meth-
ods to look for available types:

function GetType (ATypeInfo: Pointer): TRttiType; overload;
function GetType (AClass: TClass): TRttiType; overload;
function GetTypes: TArray<TRttiType>;
function FindType (const AQualifiedName: string): TRttiType;

As you can see you can pass a class, a PTypeInfo pointer obtained from a type, a
qualified name (the name of the type decorated with the unit name, as in “System.
TObject”), or retrieve the entire list of types, defined as an array of RTTI types, or
more precisely as TArray<TRttiType>.

This last call is what I've used in the following listing, a simplified version of the
code in the TypesList application project:

procedure TFormTypesList.btnTypesListClick(Sender: TObject);
var

Marco Cantù, Object Pascal Handbook

16: Reflection and Attributes - 461

 aContext: TRttiContext;
 theTypes: TArray<TRttiType>;
 aType: TRttiType;
begin
 theTypes := aContext.GetTypes;
 for aType in theTypes do
 if aType.IsInstance then
 Show(aType.QualifiedName);
end;

The GetTypes method returns the complete list of data types, but the program filters
only the types representing classes. There are about a dozen other classes represent-
ing types in the unit.

note The Rtti unit refers to class types as “instances” or and “instance types” (as in TRttiInstance-
Type). This is a bit confusing, as we generally use the terms instance to refer to an actual object.

The individual objects in the types list are of classes which inherit from the TRtti-
Type base class. Specifically, we can look for the TRttiInstanceType class type,
rewriting the code above as in the following modified snippet:

 for aType in theTypes do
 if aType is TRttiInstanceType then
 Show(aType.QualifiedName);

The actual code of the demo is a little more complex, as it populates a string list
first, sorts the elements, and than populates a ListView control, using BeginUdpate
and EndUdpate for optimization (and a try finally block around those to make sure
the end operation is always performed):

var
 aContext: TRttiContext;
 theTypes: TArray<TRttiType>;
 sList: TStringList;
 aType: TRttiType;
 sTypeName: string;
begin
 ListView1.ClearItems;
 sList := TStringList.Create;
 try
 theTypes := aContext.GetTypes;
 for aType in theTypes do
 if aType.IsInstance then
 sList.Add(aType.QualifiedName);
 sList.Sort;
 ListView1.BeginUpdate;
 try
 for sTypeName in sList do
 (ListView1.Items.Add).Text := sTypeName;
 finally
 ListView1.EndUpdate;

Marco Cantù, Object Pascal Handbook

462 - 16: Reflection and Attributes

 end;
 finally
 sList.Free;
 end;
end;

This code produces a rather long list with hundreds of data types, with the actual
number depending on the platform and the version of the compiler, as you can see
in Figure 16.1. Notice that the image lists types from the RTTI unit, covered in the
next section.

Figure 16.1:
The output of the
TypesList application
project

The RTTI Classes in the Rtti Unit

In the following list, you can see the entire inheritance graph for the classes that
derive from the abstract TRttiObject class and are defined in the System.Rtti unit:

TRttiObject (abstract)
 TRttiNamedObject
 TRttiType
 TRttiStructuredType (abstract)
 TRttiRecordType
 TRttiInstanceType
 TRttiInterfaceType
 TRttiOrdinalType
 TRttiEnumerationType
 TRttiInt64Type
 TRttiInvokableType
 TRttiMethodType

Marco Cantù, Object Pascal Handbook

16: Reflection and Attributes - 463

 TRttiProcedureType
 TRttiClassRefType
 TRttiEnumerationType
 TRttiSetType
 TRttiStringType
 TRttiAnsiStringType
 TRttiFloatType
 TRttiArrayType
 TRttiDynamicArrayType
 TRttiPointerType
 TRttiMember
 TRttiField
 TRttiProperty
 TRttiInstanceProperty
 TRttiIndexedProperty
 TRttiMethod
 TRttiParameter
 TRttiPackage
 TRttiManagedField

Each of these classes provides specific information about the given type. As an
example, only a TRttiInterfaceType offers a way to access to the interface GUID.

note In the first implementation of the Rtti unit there was no RTTI object to access indexed properties
(like the Strings[] of a TStringList). This was later added and it is now available, making the
run-time type information really complete.

RTTI Objects Lifetime Management and the
TRttiContext record

If you look at the source code of the btnTypesListClick method listed earlier, there
is something that looks quite wrong. The GetTypes call returns an array of types, but
the code doesn't free these internal objects.

The reason is that the TRttiContext record structure becomes the effective of owner
for all of the RTTI objects that are being created. When the record is disposed (that
is, when it goes out of scope), an internal interface is cleared invoking its own
destructor that frees all of the RTTI objects that were created through it.

The TRttiContext record actually has a dual role. On one side it controls the life-
time of the RTTI objects (as I just explained), on the other hand it caches RTTI
information that is quite expensive to recreate with a search. That's why you might
want to keep reference to the TRttiContext record alive for an extended period,
allowing you to keep accessing the RTTI objects it owns without having to recreate
them (again, the time consuming operation).

Marco Cantù, Object Pascal Handbook

464 - 16: Reflection and Attributes

Internally the TRttiContext record uses a global pool of type TRttiPool, which uses
a critical section to make its access thread safe.

note There are exceptions to the thread-safety of the RTTI pooling mechanism, described in some
detail in the comments available in the Rtti unit itself.

So, to be more precise, the RTTI pool is shared among TRttiContext records, so the
pooled RTTI objects are kept around while at least one TRttiContext record is in
memory. To quote the comment in the unit:

{... working with RTTI objects without at least one context being alive
is an error. Keeping at least one context alive should keep the Pool
variable valid}

In other words, you have to avoid cacheing and keeping RTTI objects around after
you've released the RTTI context. This is an example that leads to a memory access
violation (again part of the TypesList application project):

function GetThisType (aClass: TClass): TRttiType;
var
 aContext: TRttiContext;
begin
 Result := aContext.GetType(aClass);
end;

procedure TFormTypesList.Button1Click(Sender: TObject);
var
 aType: TRttiType;
begin
 aType := GetThisType (TForm);
 Show (aType.QualifiedName);
end;

To summarize, the RTTI objects are managed by the context and you should not
keep them around. The context in turn is a record, so it is disposed of automatically.
You might see code that uses the TRttiContext in the following way:

context := TRttiContext.Create;
try
 // use the context
finally
 context.Free;
end;

The pseudo-constructor and pseudo-destructor set the internal interface, that man-
ages the actual data structures used behind the scenes, to nil cleaning up the
pooling mechanism. However, as this operation is automatic for a local type such as
a record, this is not needed, unless somewhere you refer to the context record using
a pointer.

Marco Cantù, Object Pascal Handbook

16: Reflection and Attributes - 465

Displaying Class Information

The most relevant types you might want to inspect at run time are certainly the so-
called structured types, that is instances, interfaces, and records. Focusing on
instances, we can refer to the relationship among classes, by following the BaseType
information available for instance types.

Accessing types is certainly an interesting starting point, but what is relevant and
specifically new is the ability to learn about further details of these types, including
their members. As you click on one of the types (here the TPopup component class)
the program displays a list of properties, methods, and fields of the type, in three
pages of a tab control, as you can see in Figure 16.2.

Figure 16.2:
The detailed type
information displayed
by the TypesList
application project

The unit of this secondary form, which can probably be adapted and expanded to be
used as a generic type browser in other applications, has a method called ShowType-
Information that walks through each property, method, and field of the given type,
adding them to three separate list boxes with the indication of their visibility (pri for
private, pro for protected, pub for public, and pbl for published, as returned by a
simple case statement in the VisibilityToken function):

procedure TFormTypeInfo.ShowTypeDetails(typename: string);
var
 aContext: TRttiContext;
 aType: TRttiType;

Marco Cantù, Object Pascal Handbook

466 - 16: Reflection and Attributes

 aProperty: TRttiProperty;
 aMethod: TRttiMethod;
 aField: TRttiField;
begin
 aType := aContext.FindType(typename);
 if not Assigned(aType) then
 Exit;

 LabelType.Text := aType.QualifiedName;
 for aProperty in atype.GetProperties do
 FormTypeInfo.LVProperties.Items.Add.Text := aProperty.Name +
 ': ' + aProperty.PropertyType.Name + ' ' +
 VisibilityToken (aProperty.Visibility);
 for aMethod in atype.GetMethods do
 LVMethods.Items.Add.Text := aMethod.Name + ' ' +
 VisibilityToken (aMethod.Visibility);
 for aField in aType.GetFields do
 LVFields.Items.Add.Text := aField.Name + ': ' +
 aField.FieldType.Name + ' ' +
 VisibilityToken (aField.Visibility);
end;

You could go ahead and extract further information from the types of these proper-
ties, get parameter lists of the methods and check the return type, and more. Here I
don't want to build a complete RTTI browser but only give you a feeling of what can
be achieved.

RTTI for Packages

Beside the methods you can use to access a type or the list of types, the record TRt-
tiContext has another very interesting method, GetPackages, which returns a list of
the run-time packages used by the current application. If you execute this method in
an application compiled with no run time packages, all you get is the executable file
itself. But if you execute it in an application compiled with run time packages, you'll
get a list of those packages. From that point, you can delve into the types made
available by each of the packages. Notice that in this case the list of types is much
longer, as RTL and visual library types not used by the application are not removed
by the smart linker.

If you use run time packages, you can also retrieve the list of types for each of the
packages (and the executable file itself), by using code like:

var
 aContext: TRttiContext;
 aPackage: TRttiPackage;
 aType: TRttiType;
begin
 for aPackage in aContext.GetPackages do

Marco Cantù, Object Pascal Handbook

16: Reflection and Attributes - 467

 begin
 ListBox1.Items.Add('PACKAGE ' + aPackage.Name);
 for aType in aPackage.GetTypes do
 if aType.IsInstance then
 begin
 ListBox1.Items.Add(' - ' + aType.QualifiedName);
 end;
 end;

note Packages in Object Pascal can be used to add components to the development environment, as
we've seen in Chapter 11. However, packages can also be used at runtime, deploying a main exe-
cutable with a few runtime packages, rather than a single, larger executable file. If you are familiar
with Windows development, packages have a role similar to DLLs (and they technical are DLLs),
or even more precisely as .NET assemblies. While packages play a very important role on Win-
dows, they are not currently supported on mobile platforms (also due to operating systems
application deployment limitations, like in iOS).

The TValue Structure

The new extended RTTI not only lets you browse the internal structure of a program
but it also provides specific information, including property and field values. While
the TypInfo unit provided the GetPropValue function to access a generic property
and retrieve a variant type with its value, the new Rtti unit uses a different struc-
ture for holding an untyped element, the TValue record.

This record can store almost any possible Object Pascal data type and does so by
keeping track of the original data representation, by holding both the data and its
data type. What it can do is read and write data in the given format. It you write an
Integer to TValue, you can only read an Integer from it. If you write a string, you can
read back the string.

What it cannot do is convert from one format to another. So even if a TValue has an
AsString and an AsInteger method, you can use the former only if the data is rep-
resenting is indeed a string, the second only if you originally assigned an integer to
it. For example, in this case you can use the AsInteger method and if you call the
IsOrdinal method it will return True:

var
 v1: TValue;
begin
 v1 := 100;
 if v1.IsOrdinal then
 Log (IntToStr (v1.AsInteger));

Marco Cantù, Object Pascal Handbook

468 - 16: Reflection and Attributes

However, you cannot use the AsString method, which would raise an invalid type-
cast exception:

var
 v1: TValue;
begin
 v1 := 100;
 Log (v1.AsString);

If you need a string representation, though, you can use the ToString method,
which has a large case statement trying to accommodate most data types:

var
 v1: TValue;
begin
 v1 := 100;
 Log (v1.ToString);

You can probably get a better understanding, by reading the words of Barry Kelly, a
past Embarcadero R&D team member who worked on RTTI:

TValue is the type used to marshal values to and from RTTI-based calls to
methods, and reads and writes of fields and properties.
It's somewhat like Variant but far more tuned to the Object Pascal type
system; for example, instances can be stored directly, as well as sets, class
references, etc. It's also more strictly typed, and doesn't do (for example)
silent string to number conversions.

Now that you better understand its role, let's look at the actual capabilities of the
TValue record. It has a set of higher level methods for assigning and extracting the
actual values, plus a set of low-level pointer based ones. I'll concentrate on the first
group. For assigning values, TValue defines several Implicit operators, allowing
you to perform a direct assignment as in the code snippets above:

 class operator Implicit(const Value: string): TValue;
 class operator Implicit(Value: Integer): TValue;
 class operator Implicit(Value: Extended): TValue;
 class operator Implicit(Value: Int64): TValue;
 class operator Implicit(Value: TObject): TValue;
 class operator Implicit(Value: TClass): TValue;
 class operator Implicit(Value: Boolean): TValue;

What all these operators do is call the From generic class method:

 class function From<T>(const Value: T): TValue; static;

When you call these class functions you need to specify the data type and also pass a
value of that type, like the following code replacing the assignment of the value 100
of the previous code snippets:

 v1 := TValue.From<Integer>(100);

Marco Cantù, Object Pascal Handbook

16: Reflection and Attributes - 469

This is a sort of universal technique for moving any data type into a TValue. Once
the data has been assigned, you can use several methods to test its type:

 property Kind: TTypeKind read GetTypeKind;
 function IsObject: Boolean;
 function IsClass: Boolean;
 function IsOrdinal: Boolean;
 function IsType<T>: Boolean; overload;
 function IsArray: Boolean;

Notice that the generic IsType can be used for almost any data type.

There are corresponding method for extracting the data, but again you can use only
the method compatible with the actual data stored in the TValue, as no conversion is
taking place:

 function AsObject: TObject;
 function AsClass: TClass;
 function AsOrdinal: Int64;
 function AsType<T>: T;
 function AsInteger: Integer;
 function AsBoolean: Boolean;
 function AsExtended: Extended;
 function AsInt64: Int64;
 function AsInterface: IInterface;
 function AsString: string;
 function AsVariant: Variant;
 function AsCurrency: Currency;

Some of these methods double with a Try version that returns False, rather than
raising an exception, in case of an incompatible data type. There are also some lim-
ited conversion methods, the most relevant of which are the generic Cast and the
ToString function I've already used in the code:

 function Cast<T>: TValue; overload;
 function ToString: string;

Reading a Property with TValue

The importance of TValue lies in the fact that this is the structure used when access-
ing properties and field values using the extended RTTI and the Rtti unit. As an
actual example of the use of TValue, we can use this record type to access both a
published property and a private field of a TButton object, as in the following code
(part of the RttiAccess application project):

var
 context: TRttiContext;
 aType: TRttiType;
 aProperty: TRttiProperty;
 aValue: TValue;

Marco Cantù, Object Pascal Handbook

470 - 16: Reflection and Attributes

 aField: TRttiField;
begin
 aType := context.GetType(TButton);
 aProperty := aType.GetProperty('Text');
 aValue := aProperty.GetValue(Sender);
 Show (aValue.AsString);

 aField := aType.GetField('FDesignInfo');
 aValue := aField.GetValue(Sender);
 Show (aValue.AsInteger.ToString);
end;

Invoking Methods

Not only does the new extended RTTI let you access values and fields, but it also
provides a simplified way for calling methods. In this case you have to define a
TValue element for each parameter of the method. There is a global Invoke function
which you can call for executing a method:

function Invoke(CodeAddress: Pointer; const Args: TArray<TValue>;
 CallingConvention: TCallConv; AResultType: PTypeInfo): TValue;

As a better alternative, there is a simplified Invoke overloaded method in the TRt-
tiMethod class:

 function Invoke(Instance: TObject;
 const Args: array of TValue): TValue; overload;

Two examples of invoking methods using this second simplified form (one return-
ing a value and the second requiring a parameter) are part of the RttiAccess
application project and listed below:

var
 context: TRttiContext;
 aType: TRttiType;
 aMethod: TRttiMethod;
 theValues: array of TValue;
 aValue: TValue;
begin
 aType := context.GetType(TButton);
 aMethod := aType.GetMethod('ToString');
 theValues := [];
 aValue := aMethod.Invoke(Sender, theValues);
 Show(aValue.AsString);

 aType := context.GetType(TForm1);
 aMethod := aType.GetMethod('Show');
 SetLength (theValues, 1);
 theValues[0] := aValue;
 aMethod.Invoke(self, theValues);
end;

Marco Cantù, Object Pascal Handbook

16: Reflection and Attributes - 471

Using Attributes

The first part of this chapter gave you a good grasp of the extended RTTI generated
by the Object Pascal compiler and of the RTTI access capabilities introduced by the
new Rtti unit. In the second part of the chapter we can finally focus on one of the
key reasons this entire architecture was introduced: the possibility to define custom
attributes and extend the compiler-generated RTTI in specific ways. We'll look at
this technology from a rather abstract perspective, and later focus on the reasons
this is an important step forward for Object Pascal, by looking at practical examples.

What is an Attribute?

An attribute (in Object Pascal or C# terms) or an annotation (in Java jargon) is a
comment or indication that you can add to your source code, applying it to a type, a
field, a method, or a property) and the compiler will embed in the program. This is
generally indicated with square brackets as in:

type
 [MyAttribute]
 TMyClass = class
 ...

By reading this information at design time in a development tool or at run time in
the final application, a program can change its behavior depending on the values it
finds.

Generally attributes are not used to change the actual core capabilities of a class of
objects, but rather to let these classes specify further mechanisms they can partici-
pate in. Declaring a class as serializable doesn't affect its code in any way, but lets
the serialization code know that it can operate on that class and how (in case you
provide further information along with the attribute, or further attributes marking
the class fields or properties).

This is exactly how the original and limited RTTI was used inside Object Pascal.
Properties marked as published could show up in the object inspector, be streamed
to a DFM file, and be accessed at run time. Attributes open up this mechanism to
become much more flexible and powerful. They are also much more complex to use
and easy to misuse, as are any powerful language features. I mean is don't throw
away all the good things you know about Object Oriented Programming to embrace
this new model, but complement one with the other.

Marco Cantù, Object Pascal Handbook

472 - 16: Reflection and Attributes

As an example, an employee class will still be represented in a hierarchy as a
derived class from a person class; an employee object will still have an ID for his or
her badge; but you can “mark” or “annotate” the employee class as class that can be
mapped to a database table or displayed by a specific runtime form. So we have
inheritance (is-a), ownership (has-a), and annotations (marked-as) as three sepa-
rate mechanism you can use when designing an application.

After you've seen the compiler features supporting custom attributes in Object Pas-
cal and looked at some practical examples, the abstract idea I just mentioned should
become more understandable, or at least that's my hope!

Attribute Classes and Attribute Declarations

How do you define a new attribute class (or attribute category)? You have to inherit
from the new TCustomAttribute class available in the System unit:

type
 SimpleAttribute = class(TCustomAttribute)
 end;

The class name you give to the attribute class will become the symbol to use in the
source code, with the optional exclusion of the Attribute postfix. So if you name
your class SimpleAttribute you'll be able to use in the code an attribute called Sim-
ple or SimpleAttribute. For this is the reason the classic initial T for Object Pascal
classes is generally not used in case of attributes.

Now that we have defined a custom attribute, we can apply it to most of the symbols
of our program: types, methods, properties, fields, and parameters. The syntax used
for applying attributes is the attribute name within square brackets:

type
 [Simple]
 TMyClass = class(TObject)
 public
 [Simple]
 procedure One;

In this case I've applied the Simple attribute to the class as a whole and to a method.
Beside a name, an attribute can support one or more parameters. The parameters
passed to an attribute must match those indicated in the constructor of the attribute
class, if any.

type
 ValueAttribute = class(TCustomAttribute)
 private
 FValue: Integer;
 public

Marco Cantù, Object Pascal Handbook

16: Reflection and Attributes - 473

 constructor Create(N: Integer);
 property Value: Integer read FValue;
 end;

This is how you can apply this attribute with one parameter:

type
 [Value(22)]
 TMyClass = class(TObject)
 public
 [Value(0)]
 procedure Two;

The attribute values, passed to its constructor, must be constant expressions, as they
are resolved at compile time. That's why you are limited to just a few data types:
ordinal values, strings, sets, and class references. On the positive side, you can have
multiple overloaded constructors with different parameters.

Notice you can apply multiple attributes to the same symbol, as I've done in the
RttiAttrib application project, which summarizes the code snippets of this section:

type
 [Simple][Value(22)]
 TMyClass = class(TObject)
 public
 [Simple]
 procedure One;
 [Value(0)]
 procedure Two;
 end;

What if you try to use an attribute that is not defined (maybe because of a missing
uses statement)? Unluckily you get a very misleading warning message:

[DCC Warning] RttiAttribMainForm.pas(44): W1025
 Unsupported language feature: 'custom attribute'

The fact this is a warning implies the attribute will be ignored, so you have to watch
out for those warnings or even better treat the “unsupported language feature”
warning like an error (something you can do in the Hints and Warnings page of the
Project Options dialog box):

[DCC Error] RttiAttribMainForm.pas(38):
 E1025 Unsupported language feature: 'custom attribute'

Finally, compared to other implementations of the same concept, there is currently
no way to limit the scope of attributes, like declaring that an attribute can be applied
to a type but not to a method. What is available in the editor, instead, is full support
for attributes in the rename refactoring. Not only you can change the name of the
attribute class, but the system will pick up when the attribute is used both in its full
name and without the final “attribute” portion.

Marco Cantù, Object Pascal Handbook

474 - 16: Reflection and Attributes

note Attributes refactoring was first mentioned by Malcolm Groves on his blog at http://www.mal-
colmgroves.com/blog/?p=554

Browsing Attributes

Now this code would seems totally useless if there wasn't a way to discover which
attributes are defined, and possibly inject a different behavior to an object because
of these attributes. Let me start focusing on the first part. The classes of the Rtti
unit let you figure out which symbols have associated attributes. This is code,
extracted from the RttiAttrib application project shows the list of the attributes for
the current class:

procedure TMyClass.One;
var
 context: TRttiContext;
 attributes: TArray<TCustomAttribute>;
 attrib: TCustomAttribute;
begin
 attributes := context.GetType(ClassType).GetAttributes;
 for attrib in attributes do
 Form39.Log(attrib.ClassName);

Running this code will print out:

SimpleAttribute
ValueAttribute

You can extend it by adding the following code to the for-in loop code to extract the
specific value of the given attributes type:

 if attrib is ValueAttribute then
 Form39.Show (' -' + IntToStr
 (ValueAttribute(attrib).Value));

What about fetching the methods with a given attribute, or with any attribute? You
cannot filter the methods up front, but have to go through each of them, check their
attributes, and see if it is relevant for you. To help in this process, I've written a
function that checks if a method supports a given attribute:

type
 TCustomAttributeClass = class of TCustomAttribute;

function HasAttribute (aMethod: TRttiMethod;
 attribClass: TCustomAttributeClass): Boolean;
var
 attributes: TArray<TCustomAttribute>;
 attrib: TCustomAttribute;
begin
 Result := False;
 attributes := aMethod.GetAttributes;

Marco Cantù, Object Pascal Handbook

16: Reflection and Attributes - 475

 for attrib in attributes do
 if attrib.InheritsFrom (attribClass) then
 Exit (True);
end;

The HasAttribute function is called by the RttiAttrib program while checking for
a given attribute or any of them:

var
 context: TRttiContext;
 aType: TRttiType;
 aMethod: TRttiMethod;
begin
 aType := context.GetType(TMyClass);

 for aMethod in aType.GetMethods do
 if HasAttribute (aMethod, SimpleAttribute) then
 Show (aMethod.name);

 for aMethod in aType.GetMethods do
 if HasAttribute (aMethod, TCustomAttribute) then
 Show (aMethod.name);

The effect is to list methods marked with the given attributes, as described by fur-
ther Log calls which I've omitted from the listing above:

Methods marked with [Simple] attribute
One

Methods marked with any attribute
One
Two

Rather than simply describing attributes, what you generally do is add some inde-
pendent behavior determined by the attributes of a class, rather than its actual code.
As an example, I can inject a specific behavior in the previous code: The goal could
be calling all methods of a class marked with a given attribute, considering them as
parameterless methods:

procedure TForm39.btnInvokeIfZeroClick(Sender: TObject);
var
 context: TRttiContext;
 aType: TRttiType;
 aMethod: TRttiMethod;
 aTarget: TMyClass;
 zeroParams: array of TValue;
begin
 aTarget := TMyClass.Create;
 try
 aType := context.GetType(aTarget.ClassType);
 for aMethod in aType.GetMethods do
 if HasAttribute (aMethod, SimpleAttribute) then
 aMethod.Invoke(aTarget, zeroParams);
 finally

Marco Cantù, Object Pascal Handbook

476 - 16: Reflection and Attributes

 aTarget.Free;
 end;
end;

What this code snippet does is create an object, grab its type, check for a given
attribute, and invoke each method that has the Simple attribute. Rather than inher-
iting from a base class, implementing an interface, or writing specific code to
perform the request, all we have to do to get the new behavior is mark one of more
methods with a given attribute. Not that this example makes the use of attributes
extremely obvious: for some common patterns in using attributes and some actual
case studies you can refer to the final part of this chapter.

Virtual Methods Interceptors

There is another relevant feature that was added after the extended RTTI was intro-
duced, and it is the ability to intercept the execution of virtual methods of an
existing class, by creating a proxy class for an existing object. In other words, you
can take an existing object and change its virtual methods (a specific one or all of
them at once).

Why would you want to do this? In a standard Object Pascal application, you proba-
bly would not use this feature. If you need an object with a different behavior, just
change it or create a subclass. Things are different for libraries, because libraries
should be written in a very generic way, knowing little about the objects they'll be
able to manipulate, and imposing as little burden as possible on the objects them-
selves. This is the kind of scenario Virtual Methods Interceptors were added to
Object Pascal.

note A very detailed blog post by Barry Kelly on Virtual Method Interceptors (to which I owe a lot) is in
available at http://blog.barrkel.com/2010/09/virtual-method-interception.html.

Before we focus on possible scenarios, let me discuss the technology in itself. Sup-
pose you have an existing class with at least a virtual method, like the following:

type
 TPerson = class
 ...
 public
 property Name: string read FName write SetName;
 property BirthDate: TDate read FBirthDate write SetBirthDate;
 function Age: Integer; virtual;
 function ToString: string; override;

Marco Cantù, Object Pascal Handbook

16: Reflection and Attributes - 477

 end;

function TPerson.Age: Integer;
begin
 Result := YearsBetween (Date, FBirthDate);
end;

function TPerson.ToString: string;
begin
 Result := FName + ' is ' + IntToStr (Age) + ' years old';
end;

Now what you can do is to create a TVirtualMethodInterceptor object (a new class
defined in the RTTI unit) tied to the class subclass the object, changing the object's
static class to the dynamic one:

var
 vmi: TVirtualMethodInterceptor;
begin
 vmi := TVirtualMethodInterceptor.Create(TPerson);
 vmi.Proxify(Person1);

Once you have the vmi object you can install special handlers for its events (OnBe-
fore, OnAfter, and OnException) using anonymous methods. These will be
triggered before any virtual method call, after any virtual method call, and in case of
an exception in a virtual method. These are the signatures for the three anonymous
method types:

 TInterceptBeforeNotify = reference to procedure(
 Instance: TObject; Method: TRttiMethod;
 const Args: TArray<TValue>; out DoInvoke: Boolean;
 out Result: TValue);
 TInterceptAfterNotify = reference to procedure(
 Instance: TObject; Method: TRttiMethod;
 const Args: TArray<TValue>; var Result: TValue);
 TInterceptExceptionNotify = reference to procedure(
 Instance: TObject; Method: TRttiMethod;
 const Args: TArray<TValue>; out RaiseException: Boolean;
 TheException: Exception; out Result: TValue);

In each event you get the object, the method reference, the parameters, and the
result (which might be already set or not). In the OnBefore event you can set DoIn-
voke parameter to disable the standard execution. In the OnExcept event you get
information about the exception.

In the InterceptBaseClass application project, which uses the TPerson class above,
I've intercepted the class virtual methods with this logging code:

procedure TFormIntercept.btnInterceptClick(Sender: TObject);
begin
 vmi := TVirtualMethodInterceptor.Create(TPerson);
 vmi.OnBefore := procedure(Instance: TObject; Method: TRttiMethod;
 const Args: TArray<TValue>; out DoInvoke: Boolean;

Marco Cantù, Object Pascal Handbook

478 - 16: Reflection and Attributes

 out Result: TValue)
 begin
 Show('Before calling ' + Method.Name);
 end;
 vmi.OnAfter := procedure(Instance: TObject; Method: TRttiMethod;
 const Args: TArray<TValue>; var Result: TValue)
 begin
 Show('After calling ' + Method.Name);
 end;
 vmi.Proxify(Person1);
end;

Notice that the vmi object needs to be kept around at least until the Person1 object is
in use, or you'll be using a dynamic class that's not available any more and you'll be
calling anonymous methods that have already been released. In the demo, I've
saved it as a form field, just like the object to which it refers.

The program uses the object by calling its methods and checking the base class
name:

 Show ('Age: ' + IntToStr (Person1.Age));
 Show ('Person: ' + Person1.ToString);
 Show ('Class: ' + Person1.ClassName);
 Show ('Base Class: ' + Person1.ClassParent.ClassName);

Before you install the interceptor, the output is:

Age: 26
Person: Mark is 26 years old
Class: TPerson
Base Class: TObject

After you install the interceptor, the output becomes:

Before calling Age
After calling Age
Age: 26
Before calling ToString
Before calling Age
After calling Age
After calling ToString
Person: Mark is 26 years old
Class: TPerson
Base Class: TPerson

Notice that the class has the same name of the base class, but it is in fact a different
one, the dynamic class created by the Virtual Method Interceptor. Although there
has no official way to restore the class of the target object to the original one, the
class itself is available in the Virtual Method Interceptor object and also as base
class of the object. Still, you can use brute force to assign to the class data of the
object (its initial four bytes) the correct class reference:

 PPointer(Person1)^ := vmi.OriginalClass;

Marco Cantù, Object Pascal Handbook

16: Reflection and Attributes - 479

As a further example, I've modified the OnBefore code so that in case you are calling
Age it returns a given value and skips executing the actual method:

 vmi.OnBefore := procedure(Instance: TObject; Method: TRttiMethod;
 const Args: TArray<TValue>; out DoInvoke: Boolean;
 out Result: TValue)
 begin
 Show ('Before calling ' + Method.Name);
 if Method.Name = 'Age' then
 begin
 Result := 33;
 DoInvoke := False;
 end;
 end;

The output changes from the version above, as follows (notice that the Age calls and
the relative OnAfter events are skipped):

Before calling Age
Age: 33
Before calling ToString
Before calling Age
After calling ToString
Person: Mark is 33 years old
Class: TPerson
Base Class: TPerson

Now that we have seen the technical details behind Virtual Methods Interceptor, we
can get back to figure out in which scenarios you'd want to use this feature. Again,
there is basically no reason to us this in a standard application. The focus, instead, is
mostly for those who develop advanced libraries and need to implement a custom
behavior for testing or processing objects.

For example, this could help building a unit testing library, although it would be
limited to virtual methods only. You'd also possibly use this along with custom
attributes to implement a coding style similar to Aspect Oriented Programming.

RTTI Case Studies

Now that I've covered the foundations of RTTI and the use of attributes it is worth
looking into some real world situations in which using these technique will prove
useful. There are many scenarios in which a more flexible RTTI and the ability to
customize it through attributes is relevant, but I have no room for a long list of situ-
ations. What I'll do instead is guide you in the step-by-step development of two
simple but significant examples.

Marco Cantù, Object Pascal Handbook

480 - 16: Reflection and Attributes

The first demo program will showcase the use of attributes to identify specific infor-
mation within a class. In particular, we want to be able to inspect an object of a class
that declares to be part of an architecture and have a description and a unique ID
referring to the object itself. This might come handy in several situations, like
describing objects stored in a collection (either a generic or traditional one).

The second demo will be an example of streaming, specifically streaming a class to
an XML file. I'll start from the classic approach of using the published RTTI, move
to the new extended RTTI, and finally show how you can use attributes to customize
the code and make it more flexible.

Attributes for ID and Description

If you want to have a couple of methods shared among many objects, the most clas-
sic approach was to define a base class with virtual methods and inherit the various
objects from the base class, overriding the virtual methods. This is nice, but poses a
lot of restrictions in terms of the classes which can participate in the architecture, as
you have a fixed base class.

A standard technique to overcome this situation is to use an interface rather than a
common base class. Multiple classes implementing the interface (but with no com-
mon ancestor class) can provide an implementation of the interface methods, which
act very similarly to virtual methods.

A totally different style (with both advantages and disadvantages) is the use of
attributes to mark participating classes and given methods (or properties). This
opens up more flexibility, doesn't involve interfaces, but is based on a comparatively
slow and error-prone run-time information look up, rather than a compile-time res-
olution. This means I'm not advocating this coding style over interfaces as a better
approach, only as one that might be worth evaluating and interesting to use in some
circumstances.

The Description Attribute Class

For this demo, I've defined an attribute with a setting indicating the element is it
being applied to. I could have used three different attributes, but prefer to avoid
polluting the attributes name space. This is the attribute class definition:

type
 TDescriptionAttrKind = (dakClass, dakDescription, dakId);

 DescriptionAttribute = class (TCustomAttribute)
 private

Marco Cantù, Object Pascal Handbook

16: Reflection and Attributes - 481

 fDak: TDescriptionAttrKind;
 public
 constructor Create (aDak: TDescriptionAttrKind = dakClass);
 property Kind: TDescriptionAttrKind read fDak;
 end;

Notice the use of the constructor with a default value for its only parameter, to let
you use the attribute with no parameters.

The Sample Classes

Next I wrote two sample classes that use the attribute. Each class is marked with the
attribute and has two methods marked with the same attribute customized with the
different kinds. The first (TPerson) has the description mapped to the GetName func-
tion and uses its TObject.GetHashCode method to provide a (temporary) ID, re-
declaring the method to apply the attribute to it (the method code is simply a call to
the inherited version):

type
 [Description]
 TPerson = class
 private
 FBirthDate: TDate;
 FName: string;
 FCountry: string;
 procedure SetBirthDate(const Value: TDate);
 procedure SetCountry(const Value: string);
 procedure SetName(const Value: string);
 public
 [Description (dakDescription)]
 function GetName: string;
 [Description (dakID)]
 function GetStringCode: Integer;
 published
 property Name: string read GetName write SetName;
 property BirthDate: TDate
 read FBirthDate write SetBirthDate;
 property Country: string read FCountry write SetCountry;
 end;

The second class (TCompany) is even simpler as it has its own values for the ID and
the description:

type
 [Description]
 TCompany = class
 private
 FName: string;
 FCountry: string;
 FID: string;
 procedure SetName(const Value: string);
 procedure SetID(const Value: string);

Marco Cantù, Object Pascal Handbook

482 - 16: Reflection and Attributes

 public
 [Description (dakDescription)]
 function GetName: string;
 [Description (dakID)]
 function GetID: string;
 published
 property Name: string read GetName write SetName;
 property Country: string read FCountry write FCountry;
 property ID: string read FID write SetID;
 end;

Even if there are similarities among the two classes they are totally unrelated in
terms of hierarchy, common interface, or anything like that. What they share is the
use of the same attribute.

The Sample Project and Attributes Navigation

The shared use of the attribute is used to display information about objects added to
a list, declared in the main form of the program as:

 fObjectsList: TObjectList<TObject>;

This list is created and initialized as the program starts:

procedure TFormDescrAttr.FormCreate(Sender: TObject);
var
 aPerson: TPerson;
 aCompany: TCompany;
begin
 fObjectsList := TObjectList<TObject>.Create;

 // add a person
 aPerson := TPerson.Create;
 aPerson.Name := 'Wiley';
 aPerson.Country := 'Desert';
 aPerson.BirthDate := Date - 1000;
 fObjectsList.Add(aPerson);

 // add a company
 aCompany := TCompany.Create;
 aCompany.Name := 'ACME Inc.';
 aCompany.ID := IntToStr (GetTickCount);
 aCompany.Country := 'Worldwide';
 fObjectsList.Add(aCompany);

 // add an unrelated object
 fObjectsList.Add(TStringList.Create);

To display information about the objects (namely the ID and the description, if
available) the program uses attributes discovery via RTTI. First, it uses a helper
function to determine if the class is marked with the specific attribute:

function TypeHasDescription (aType: TRttiType): Boolean;

Marco Cantù, Object Pascal Handbook

16: Reflection and Attributes - 483

var
 attrib: TCustomAttribute;
begin
 for attrib in aType.GetAttributes do
 begin
 if (attrib is DescriptionAttribute) then
 Exit (True);
 end;
 Result := False;
end;

note In this case you need to check for the full class name, DescriptionAttribute, and not only
“Description”, which is the symbol you can use when applying the attribute.

If this is the case, the program proceeds by getting each attribute of each method,
with a nested loop, and checking if this is the attribute we are looking for:

 if TypeHasDescription (aType) then
 begin
 for aMethod in aType.GetMethods do
 for attrib in aMethod.GetAttributes do
 if attrib is DescriptionAttribute then
 ...

At the core of the loop, the methods marked with attributes are invoked to read the
results in two temporary strings (later added to the user interface):

 if attrib is DescriptionAttribute then
 case DescriptionAttribute(attrib).Kind of
 dakClass: ; // ignore
 dakDescription:
 strDescr := aMethod.Invoke(anObject, []).ToString;
 dakId:
 strID := aMethod.Invoke(anObject, []).ToString;

What the program fails to do is to check if an attribute is duplicated (that is, if there
are multiple methods marked with the same attribute, a situation in which you
might want to raise an exception). Summing up all of the snippets of the previous
page, this is the complete code of the UpdateList method:

procedure TFormDescrAttr.UpdateList;
var
 anObject: TObject;
 context: TRttiContext;
 aType: TRttiType;
 attrib: TCustomAttribute;
 aMethod: TRttiMethod;
 strDescr, strID: string;
begin
 for anObject in fObjectsList do
 begin
 aType := context.GetType(anObject.ClassInfo);
 if TypeHasDescription (aType) then

Marco Cantù, Object Pascal Handbook

484 - 16: Reflection and Attributes

 begin
 for aMethod in aType.GetMethods do
 for attrib in aMethod.GetAttributes do
 if attrib is DescriptionAttribute then
 case DescriptionAttribute(attrib).Kind of
 dakClass: ; // ignore
 dakDescription:
 // should check if duplicate attribute
 strDescr := aMethod.Invoke(
 anObject, []).ToString;
 dakId:
 strID := aMethod.Invoke(
 anObject, []).ToString;
 end;
 // done looking for attributes
 // should check if we found anything
 with ListView1.Items.Add do
 begin
 Text := sTypeName;
 Detail := strDescr;
 end;
 end;
 end;
 // else ignore the object, could raise an exception
end;

If this program produces rather uninteresting output, the way it is done is relevant,
as I've marked some classes and two methods of those classes with an attribute, and
have been able to process these classes with an external algorithm.

In other words, the classes themselves need no specific base class, no interface
implementation nor any internal code to be part of the architecture, but only need
to declare they want to get involved by using attributes. The full responsibility for
managing the classes is in some external code.

XML Streaming

One interesting and very useful case for using RTTI is creating an “external” image
of an object, for saving its status to a file or sending it over the wire to another appli-
cation. Traditionally, the Object Pascal approach to this problem has been
streaming the published properties of an object, the same approach used when cre-
ating DFM files. Now the RTTI lets you save the actual data of the object, its fields,
rather than the external interface. This is more powerful, although it can lead to
extra complexity, for example in the management of the data of internal objects.
Again, the demo acts as a simple showcase of the technique and doesn't delve into
all of its implications.

Marco Cantù, Object Pascal Handbook

16: Reflection and Attributes - 485

This examples comes in three versions, compiled in a single project for simplicity.
The first is the traditional Object Pascal approach based on published properties,
the second uses the extended RTTI and fields, the third uses attributes to customize
the data mapping.

The Trivial XML Writer Class

To help with the generation of the XML, I've based the XmlPersist application
project on an extended version of a TTrivialXmlWriter class I originally wrote in
my Delphi 2009 Handbook to demonstrate the use of the TTextWriter class. Here I
don't want to cover it again. Suffice to say that the class can keep track of the XML
nodes it opens, thanks to a stack of strings, and close the XML nodes in a LIFO (Last
In, First Out) order.

note The source code of the TTrivialXmlWriter class of Delphi 2009 Handbook can be found at
http://www.marcocantu.com/code/dh2009/ReaderWriter.htm

To the original class I've added some limited formatting code and three methods for
saving an object, based on the three different approaches I'm going to explore in
this section. This is the complete class declaration:

type
 TTrivialXmlWriter = class
 private
 fWriter: TTextWriter;
 fNodes: TStack<string>;
 fOwnsTextWriter: Boolean;
 public
 constructor Create (aWriter: TTextWriter); overload;
 constructor Create (aStream: TStream); overload;
 destructor Destroy; override;
 procedure WriteStartElement (const sName: string);
 procedure WriteEndElement (fIndent: Boolean = False);
 procedure WriteString (const sValue: string);
 procedure WriteObjectPublished (AnObj: TObject);
 procedure WriteObjectRtti (AnObj: TObject);
 procedure WriteObjectAttrib (AnObj: TObject);
 function Indentation: string;
 end;

To get an idea of the code, this is the WriteStartElement method, which uses the
Indentation function for leaving twice as many spaces as the current number of
nodes on the internal stack:

procedure TTrivialXmlWriter.WriteStartElement(
 const sName: string);
begin
 fWriter.Write (Indentation + '<' + sName + '>');

Marco Cantù, Object Pascal Handbook

486 - 16: Reflection and Attributes

 fNodes.Push (sname);
end;

You'll find the complete code of the class in the project source code.

Classic RTTI-Based Streaming

After this introduction covering the support class, let me start from the very begin-
ning, that is saving an object in an XML-based format using the classic RTTI for
published properties.

The code of the WriteObjectPublished method is quite complex and requires a bit
of explanation. It is based on the TypInfo unit and uses the low-level version of the
old RTTI to be able to get the list of published properties for a given object (the
AnObj parameter), with code like:

 nProps := GetTypeData(AnObj.ClassInfo)^.PropCount;
 GetMem(PropList, nProps * SizeOf(Pointer));
 GetPropInfos(AnObj.ClassInfo, PropList);
 for i := 0 to nProps - 1 do
 ...

What this does is ask for the number of properties, allocate a data structure of the
proper size, and fill the data structure with information about the published proper-
ties. In case you are wondering could you write this low-level code? Well you've just
found a very good reason why the new RTTI was introduced. For each property, the
program extracts the value of properties of numeric and string types, while it
extracts any sub-object and acts recursively on it:

strPropName := UTF8ToString (PropList[i].Name);
case PropList[i].PropType^.Kind of
 tkInteger, tkEnumeration, tkString, tkUString, ...:
 begin
 WriteStartElement (strPropName);
 WriteString (GetPropValue(AnObj, strPropName));
 WriteEndElement;
 end;
 tkClass:
 begin
 internalObject := GetObjectProp(AnObj, strPropName);
 // recurse in subclass
 WriteStartElement (strPropName);
 WriteObjectPublished (internalObject as TPersistent);
 WriteEndElement (True);
 end;
end;

There is some extra complexity, but for the sake of the example and to give you an
idea of the traditional approach, that should be enough.

Marco Cantù, Object Pascal Handbook

16: Reflection and Attributes - 487

To demonstrate the effect of the program I've written two classes (TCompany and
TPerson) adapted from the previous example. This time, however, the company can
have a person assigned to an extra property, called Boss. In the real world this
would be more complex, but for this example it is a reasonable assumption. These
are the published properties of the two classes:

type
 TPerson = class (TPersistent)
 ...
 published
 property Name: string read FName write FName;
 property Country: string read FCountry write FCountry;
 end;

 TCompany = class (TPersistent)
 ...
 published
 property Name: string read FName write FName;
 property Country: string read FCountry write FCountry;
 property ID: string read FID write FID;
 property Boss: TPerson read FPerson write FPerson;
 end;

The main form of the program has a button used to create and connect two objects
of these two classes and saving them to an XML stream, which is later displayed.
The streaming section has the following code:

 ss := TStringStream.Create;
 xmlWri := TTrivialXmlWriter.Create (ss);
 xmlWri.WriteStartElement('company');
 xmlWri.WriteObjectPublished(aCompany);
 xmlWri.WriteEndElement;

The result is an XML file like:

<company>
 <Name>ACME Inc.</Name>
 <Country>Worldwide</Country>
 <ID>29088851</ID>
 <Boss>
 <Name>Wiley</Name>
 <Country>Desert</Country>
 </Boss>
</company>

Streaming Fields With Extended RTTI

With the high-level RTTI available in Object pascal, I could have converted this old
program to use the extended RTTI for accessing the published properties. What I'm
going to do, instead, is to use it for saving the internal representation of the object,
that is, its private data fields. Not only am I doing something more hard-core, but

Marco Cantù, Object Pascal Handbook

488 - 16: Reflection and Attributes

I'm doing it with much higher-level code. The complete code of the WriteObjec-
tRtti method is the following:

procedure TTrivialXmlWriter.WriteObjectRtti(AnObj: TObject);
var
 aContext: TRttiContext;
 aType: TRttiType;
 aField: TRttiField;
begin
 aType := aContext.GetType (anObj.ClassType);
 for aField in aType.GetFields do
 begin
 if aField.FieldType.IsInstance then
 begin
 WriteStartElement (aField.Name);
 WriteObjectRtti (aField.GetValue(anObj).AsObject);
 WriteEndElement (True);
 end
 else
 begin
 WriteStartElement (aField.Name);
 WriteString (aField.GetValue(anObj).ToString);
 WriteEndElement;
 end;
 end;
end;

The resulting XML is somewhat similar, but somehow less clean as field names are
generally less readable than property names:

<company>
 <FName>ACME Inc.</FName>
 <FCountry>Worldwide</FCountry>
 <FID>29470148</FID>
 <FPerson>
 <FName>Wiley</FName>
 <FCountry>Desert</FCountry>
 </FPerson>
</company>

Another big difference, though, is that in this case the classes didn't need to inherit
from the TPersistent class or be compiled with any special option.

Using Attributes to Customize Streaming

Beside the problem with the tag names, there is another issue I haven't mentioned.
Using XML tag names which are actually compiled symbols is far from a good idea.
Also, in the code there is no way to exclude some properties or fields from XML-
base streaming.

Marco Cantù, Object Pascal Handbook

16: Reflection and Attributes - 489

note Object Pascal properties streaming can be controlled using the stored directive, which can be
read using the TypInfo unit. Still, this solution is far from simple and clean, even if the DFM
streaming mechanism uses it effectively.

These are issues we can address using attributes, although the drawback will be
having to use them quite heavily in the declaration of our classes, a coding style I
don't like much. For the new version of the code, I've defined an attribute construc-
tor with an optional parameter:

type
 xmlAttribute = class (TCustomAttribute)
 private
 fTag: string;
 public
 constructor Create (strTag: string = '');
 property TagName: string read fTag;
 end;

The attributes-based streaming code is a variation of the last version based on the
extended RTTI. The only difference is that now the program calls the CheckXmlAttr
helper function to verify if the field has the xml attribute and the (optional) tag
name decoration:

procedure TTrivialXmlWriter.WriteObjectAttrib(AnObj: TObject);
var
 aContext: TRttiContext;
 aType: TRttiType;
 aField: TRttiField;
 strTagName: string;
begin
 aType := aContext.GetType (anObj.ClassType);
 for aField in aType.GetFields do
 begin
 if CheckXmlAttr (aField, strTagName) then
 begin
 if aField.FieldType.IsInstance then
 begin
 WriteStartElement (strTagName);
 WriteObjectAttrib (aField.GetValue(anObj).AsObject);
 WriteEndElement (True);
 end
 else
 begin
 WriteStartElement (strTagName);
 WriteString (aField.GetValue(anObj).ToString);
 WriteEndElement;
 end;
 end;
 end;
end;

The most relevant code is in the CheckXmlAttr helper function:

Marco Cantù, Object Pascal Handbook

490 - 16: Reflection and Attributes

function CheckXmlAttr (aField: TRttiField;
 var strTag: string): Boolean;
var
 attrib: TCustomAttribute;
begin
 Result := False;
 for attrib in aField.GetAttributes do
 if attrib is XmlAttribute then
 begin
 strTag := xmlAttribute(attrib).TagName;
 if strTag = '' then // default value
 strTag := aField.Name;
 Exit (True);
 end;
end;

Fields without the XML attribute are ignored and the tag used in the XML output is
customizable. To demonstrate this, the program has the following classes (this time
I've omitted the published properties from the listing, as they are not relevant):

type
 TAttrPerson = class
 private
 [xml ('Name')]
 FName: string;
 [xml]
 FCountry: string;
 ...

 TAttrCompany = class
 private
 [xml ('CompanyName')]
 FName: string;
 [xml ('Country')]
 FCountry: string;
 FID: string; // omitted
 [xml ('TheBoss')]
 FPerson: TAttrPerson;
 ...

With these declarations, the XML output will look like the following (notice the tag
name, the fact the ID is omitted, and the (bad looking) default name for the FCoun-
try field):

<company>
 <CompanyName>ACME Inc.</CompanyName>
 <Country>Worldwide</Country>
 <TheBoss>
 <Name>Wiley</Name>
 <FCountry>Desert</FCountry>
 </TheBoss>
</company>

Marco Cantù, Object Pascal Handbook

16: Reflection and Attributes - 491

The difference here is we can be very flexible about which fields to include and how
to name them in the XML, something the previous versions didn't allow.

Even if this is just a very skeletal implementation, I think that giving you the oppor-
tunity to see the final version being created step by step starting with the classic
RTTI has given you a good feeling of the differences among the various techniques.
What is important to keep in mind, in fact, is that is it not a given that using
attributes will be always the best solution! On the other hand, it should be clear that
RTTI and attributes add a lot of power and flexibility in any scenario in which you
need to inspect the structure of an unknown object at run time.

Other RTTI-Based Libraries

To conclude this chapter, I'd like to point out the fact that there are several libraries,
both part of the product and from third parties, that have started leveraging the
extended RTTI. One such example is the binding expressions mechanism that sits
behind visual live bindings. You can create a binding expression, assign it an
expression (that is a string of text with operations like concatenation or addition),
and have the expression refer to an external object and its field.

Even if I don't want to delve too much into this topic, which is really a specific
library and not part of the language or the core system, I think a short listing can
give you an idea:

var
 bindExpr: TBindingExpression;
 pers: TPerson;
begin
 pers := TPerson.Create;
 pers.Name := 'John';
 pers.City := 'San Francisco';

 bindExpr := TBindingExpressionDefault.Create;
 bindExpr.Source := 'person.name + " lives is " + person.city');
 BindExpr.Compile([
 TBindingAssociation.Create(pers, 'person')]);
 Show (BindExpr.Evaluate.GetValue.ToString);

 pers.Free;
 bindExpr.Free;
end;

Notice that the advantage here comes from the fact you can change the expression
at runtime (although in the specific snippet above it is a constant string). The
expression can come from an edit, or can be picked dynamically from several possi-
ble expressions. It is first assigned to the TBindingExpression object and than

Marco Cantù, Object Pascal Handbook

492 - 16: Reflection and Attributes

analyzed and compiled (that is transformed into a symbolic form, not assembly
code) at runtime with the Compile call. It will than use RTTI when executed access
to the TPerson object.

The drawback is this approach makes the expression evaluation significantly slower
than the execution of similar compiled Object Pascal source code. In other words,
you have to balance the reduced performance with the increased flexibility. Also the
Visual Live Binding model built on top of this makes for a very nice and easy devel-
oper experience.

Marco Cantù, Object Pascal Handbook

17: TObject and the System Unit - 493

17: tobject and

the system unit

At the heart of any Object Pascal language application there is a hierarchy of classes.
Every class in the system is ultimately a subclass of the TObject class, so the whole
hierarchy has a single root. This allows you to use the TObject data type as a
replacement for the data type of any class type in the system.

The TObject class is defined in a core RTL unit called System, which has such an
important role that it is automatically included in every compilation. While I won't
cover all System unit classes and other System unit functions, there are a few worth
delving into and TObject is certainly the most important one.

note It could be debated at length if a core system class like TObject is part of the language or if it is
part of the RunTime Library (RTL). The same is true for other features of the System unit, a unit
so critical that it is automatically included in the compilation of any other unit. (It is actually ille-
gal to add it to a uses statement.) Such a debate would be rather futile, though, so I'll just leave it
for another time.

Marco Cantù, Object Pascal Handbook

494 - 17: TObject and the System Unit

The TObject Class

As I've just mentioned the TObject class is a very special one, as all other classes
inherit from it. When you are declaring a new class, in fact, if you are not indicating
a base class, the class will automatically inherit from TObject. In programming lan-
guage terms this type of scenario is called a singly-rooted class hierarchy, a feature
Object Pascal shared with C#, Java, and quite a few other modern programming
languages. The notable exception is C++, which has no concept of a single base class
and allows you to define multiple totally separate class hierarchies.

This base class is not a class you'd use directly by creating instances of it. However it
is a class you'll easily end up using a lot. Every time you need a variable that can
hold an object of any type, you declare it of the TObject type. A good example of
this usage is in component libraries event handlers, that very often have TObject as
the type of the first parameter, generally called Sender. This means any object of
any actual class.

Many generic collection are also collections of objects, and there are several scenar-
ios in which the TObject type is used directly. In the following sections I'm going to
touch on a few of the features of this class, that are available to all classes in the sys-
tem.

Construction and Destruction

Although it makes little sense to create a TObject directly, the constructor and
destructor of this class are important, as they are automatically inherited by all
other classes. If you define a class without a constructor, you can still call Create on
it, invoking the TObject constructor, which is an empty method (as there is nothing
to initialize in this base class). This Create constructor is non-virtual, and you
totally replace it in your classes, unless this do-nothing constructor is good enough.
Calling the base class constructor is a good practice for any subclass, even if a direct
call to TObject.Create is not particularly useful.

note I've underlined this is a non-virtual constructor because there is another core library class, TCom-
ponent, that defines a virtual constructor, instead. The TComponent class virtual constructor
plays a key role in the streaming system, covered in the next chapter.

For destroying an object, the TObject class has a Free method (which eventually
calls the Destroy destructor), and ARC specific capabilities like DisposeOf. I've cov-

Marco Cantù, Object Pascal Handbook

17: TObject and the System Unit - 495

ered these in detail in Chapter 13, along with many suggestions on correct memory
usage, so there is no need to reiterate them here.

Knowing About an Object

An interesting group of methods of the TObject class is those returning information
about the type. The most commonly used ones are the ClassType and ClassName
methods. The ClassName method returns a string with the name of the class.
Because it is a class method (like a large number of the TObject class methods), you
can apply it both to an object and to a class. Suppose you have defined a TButton
class and a Button1 object of that class. Then the following statements have the
same effect:

Text := Button1.ClassName;
Text := TButton.ClassName;

Of course, you can also apply those to a generic TObject, and you won't get TObject
information, but information about the specific class of the object currently
assigned to the variable. For example, in the OnClick event handler of a button, call-
ing:

Text := Sender.ClassName;

would likely return the same of the lines above, that is the string 'TButton'. This is
because the class name is determined at run-time (by the specific object itself) and
not by the compiler (which will only think this is a TObject object).

While getting the class name can be handy for debugging, logging, and showing
class information in general, it is often more important to access the class reference
of the class. As an example, it is better compare two class references than the strings
with the class names. We can get class references with the ClassType method, while
the ClassParent method returns a class reference to the base class of the current
one, allowing to navigate to the base classes list. The only exception is that the
method returns nil for TObject (as it has no parent class). Once you have a class
reference, you can use it to call any class method, including the ClassName method.

Another very interesting method returning information about a class is Instance-
Size, which returns the run-time size of an object, that is the amount of memory
required by its fields (and those inherited from base classes). This is a feature used
internally when the system needs to allocate a new instance of the class.

note Although you might think that the SizeOf global function also provides this information, that
function actually returns the size of an object reference—a pointer, which is invariably four or
eight bytes, depending on the target platform—instead of the size of the object itself.

Marco Cantù, Object Pascal Handbook

496 - 17: TObject and the System Unit

More Methods of the TObject Class

There are other methods of the TObject class you can apply to any object (and also
to any class or class reference, because they are class methods). Here is a partial list,
with a short description:

· ClassName returns a string with the name of the class, for display.

· ClassNameIs checks the class name against a value.

· ClassParent returns a class reference to the parent class of the current class or
object's class. You can navigate from ClassParent to ClassParent, until you
reach the TObject class itself, in which this method returns nil.

· ClassInfo returns a pointer to the internal, low-level Run Time Type Informa-
tion (RTTI) of the class. This was used in the early days of the TypInfo unit, but it
is now replaced by the capabilities of the RTTI unit, as covered in Chapter 16.
Internally, this is still how the class RTTI is fetched.

· ClassType returns a reference to the object’s class (this cannot be applied
directly to a class, only to an object).

· InheritsFrom tests whether the class inherits (directly or indirectly) from a given
base class (this is very similar to the is operator, and actually how the is opera-
tor is ultimately implemented.).

· InstanceSize returns the size of the object’s data in bytes. This is a sum of the
fields, plus some extra special reserved bytes (including for example the class
reference). Notice, once more thing, this is the instance size, while the reference
to an instance is only as long as a pointer (4 or 8 bytes, depending on the plat-
form).

· UnitName returns the name of the unit in which the class is defined, which could
be useful for describing a class. The class name, in fact, is not unique in the sys-
tem. As we saw in the last chapter, only the qualified class name (made of the
unit name and the class name, separated by a dot) is unique in an application.

· QualifiedClassName returns this combination of unit and class name, a value
that is indeed unique in a running system.

These methods of TObject are available for objects of every class, since TObject is
the common ancestor class of every class. Here is how we can use these methods to
access class information:

procedure TSenderForm.ShowSender(Sender: TObject);
begin
 Memo1.Lines.Add (‘Class Name: ‘ +
 Sender.ClassName);

Marco Cantù, Object Pascal Handbook

17: TObject and the System Unit - 497

 if Sender.ClassParent <> nil then
 Memo1.Lines.Add (‘Parent Class: ‘ +
 Sender.ClassParent.ClassName);

 Memo1.Lines.Add (‘Instance Size: ‘ +
 IntToStr (Sender.InstanceSize));

The code checks to see whether the ClassParent is nil in case you are actually using
an instance of the TObject type, which has no base type. You can use other methods
to perform tests. For example, you can check whether the Sender object is of a spe-
cific type with the following code:

if Sender.ClassType = TButton then ...

You can also check if the Sender parameter corresponds to a given object, with this
test:

if Sender = Button1 then...

Instead of checking for a particular class or object, you’ll generally need to test the
type compatibility of an object with a given class; that is, you’ll need to check
whether the class of the object is a given class or one of its subclasses. This lets you
know whether you can operate on the object with the methods defined for the class.
This test can be accomplished using the InheritsFrom method, which is also called
when you use the is operator. The following two tests are equivalent:

if Sender.InheritsFrom (TButton) then ...
if Sender is TButton then ...

Showing Class Information

Once you have a class reference, you can add to its description (or display informa-
tion) a list of all of its base classes. In the following code snippets the base classes of
MyClass are added to a ListBox control:

ListParent.Items.Clear;
while MyClass.ClassParent <> nil do
begin
 MyClass := MyClass.ClassParent;
 ListParent.Items Add (MyClass.ClassName);
end;

You’ll notice that we use a class reference at the heart of the while loop, which tests
for the absence of a parent class (in which case the current class is TObject). Alter-
natively, we could have written the while statement in either of the following ways:

while not MyClass.ClassNameIs ('TObject') do... // slow, error prone
while MyClass <> TObject do... // fast, and readable

Marco Cantù, Object Pascal Handbook

498 - 17: TObject and the System Unit

TObject's Virtual Methods

While the structure of the TObject class has remained quite stable since the early
days of the Object Pascal language, at one point it saw the addition of three
extremely useful virtual methods. These are methods can be called on any object,
like any other TObject method, but the relevance is that these are methods you are
supposed to override and redefine in your own classes.

note If you've used the .NET framework you'll immediately recognize these methods are part of the
System.Object class of the C# base class library. Similar methods are used for the base classes
available in Java, are commonly used in JavaScript, and in other languages. The origin of some of
them, like that of toString, can be traced back to Smalltalk, which is considered the first OOP
language.

The ToString Method

The ToString virtual function is a placeholder for returning the textual representa-
tion (a description or even a serialization) of a given object. The default
implementation of the method in the TObject class returns the class name:

function TObject.ToString: string;
begin
 Result := ClassName;
end;

Of course, this is far from useful. In theory, each class should provide a way to
describe itself to a user, for example when an object is added to a visual list. Some of
the classes in the run time library override the ToString virtual function, like
TStringBuilder, TStringWriter, and the Exception class, to return the messages in
a list of exceptions (as covered in the section “The InnerException Mechanism” of
Chapter 9).

Having a standard way to return the string representation of any object is quite an
interesting idea, and I recommend you to take advantage of this core feature of the
TObject class, treating it like a language feature.

note Notice that the ToString method “semantically overloads” the “parse token String” or toString
symbol defined in the Classes unit. For this reason you'll often see that symbol referenced as
Classes.toString.

Marco Cantù, Object Pascal Handbook

17: TObject and the System Unit - 499

The Equals Method

The Equals virtual function is a placeholder for checking if two objects have the
same logical value, a different operation than checking if two variables refer to the
same object in memory, something you can achieve with the = operator. However,
and this is really confusing, the default implementation does exactly that, for the
lack of a better way:

function TObject.Equals(Obj: TObject): Boolean;
begin
 Result := Obj = Self;
end;

An example of the use of this method (with a proper override) is in the TStrings
class, in which the Equals method compares the number of strings in the list and
the content of the actual strings one by one.

A section of the library in which this technique is significantly used is generics sup-
port, in particular in the Generics.Default and Generics.Collections units. In
general it is important for a library or framework to define the concept of object
“value equivalence” separately from object identity. Having a standard mechanism
for comparing objects “by value” is a big advantage.

The GetHashCode Method

The GetHashCode virtual function is another placeholder borrowed from the .NET
framework to let each class calculate the hash code for its objects. The default code
returns a seemingly random value, the address of the object itself:

function TObject.GetHashCode: Integer;
begin
 Result := Integer(Self);
end;

note With the address of the objects being created generally taken from a limited set of heap areas, the
distribution of these number is not even, and this can adversely affect a hashing algorithm. It is
highly recommended to customize this method creating a hash based on logical values with a good
hash distribution based on the data inside the object, rather than its address. Dictionaries and
other data structure rely on hash values, improving the hash distribution can lead to significantly
better performance.

The GetHashCode virtual function is used by some collection classes that support
hash tables and as a way to optimize some code, like TDictionary <T>.

Marco Cantù, Object Pascal Handbook

500 - 17: TObject and the System Unit

Using TObject Virtual Methods

Here is an example based on some of the TObject virtual methods. The example has
a class that overrides two of these methods:

type
 TAnyObject = class
 private
 Value: Integer;
 name: string;
 public
 constructor Create (aName: string; aValue: Integer);
 function Equals(obj: TObject): Boolean; override;
 function ToString: string; override;
 end;

In the implementation of the three methods I simply had to change a call to GetType
with that to ClassType:

constructor TAnyObject.Create(aName: string;
 aValue: Integer);
begin
 inherited Create;
 name := aName;
 Value := aValue;
end;

function TAnyObject.Equals(obj: TObject): Boolean;
begin
 Result := (obj.ClassType = self.ClassType) and
 ((obj as TAnyObject).Value = self.Value);
end;

function TAnyObject.ToString: string;
begin
 Result := Name;
end;

Notice that objects are considered equal if they are of the same exact class and their
value matches, while their string representation includes only the name field. The
program creates some objects of this class as its starts:

procedure TFormSystemObject.FormCreate(Sender: TObject);
begin
 ao1 := TAnyObject.Create ('ao1', 10);
 ao2 := TAnyObject.Create ('ao2 or ao3', 20);
 ao3 := ao2;
 ao4 := TAnyObject.Create ('ao4', 20);
 ...

Notice that two references (ao2 and ao3) point to the same object in memory, and
that the last object (ao4) has the same numerical value. The program has a user

Marco Cantù, Object Pascal Handbook

17: TObject and the System Unit - 501

interface that lets a user select any two the items and compare the selected objects,
both using Equals and doing a direct reference comparison.

Here are some of the results:

Comparing ao1 and ao4
Equals: False
Reference = False

Comparing ao2 and ao3
Equals: True
Reference = True

Comparing ao3 and ao4
Equals: True
Reference = False

The program has another button used to test some of these methods for the button
itself:

var
 btn2: TButton;
begin
 btn2 := btnTest;
 Log ('Equals: ' +
 BoolToStr (btnTest.Equals (btn2), True));
 Log ('Reference = ' +
 BoolToStr (btnTest = btn2, True));
 Log ('GetHashCode: ' +
 IntToStr (btnTest.GetHashCode));
 Log ('ToString: ' + btnTest.ToString);
end;

The output is the following (with a hash value that changes upon execution):

Equals: True
Reference = True
GetHashCode: 28253904
ToString: TButton

TObject Class Summary

As a summary, this is the complete interface of the TObject class in the latest ver-
sion of the compiler (with most of the IFDEF and low-level overloads omitted, along
with private and protected sections):

type
 TObject = class
 public
 constructor Create;
 procedure Free;
 procedure DisposeOf;

Marco Cantù, Object Pascal Handbook

502 - 17: TObject and the System Unit

 class function InitInstance(Instance: Pointer): TObject;
 procedure CleanupInstance;
 function ClassType: TClass; inline;
 class function ClassName: string;
 class function ClassNameIs(const Name: string): Boolean;
 class function ClassParent: TClass;
 class function ClassInfo: Pointer; inline;
 class function InstanceSize: Integer; inline;
 class function InheritsFrom(AClass: TClass): Boolean;
 class function MethodAddress(const Name: string): Pointer;
 class function MethodName(Address: Pointer): string;
 class function QualifiedClassName: string;
 function FieldAddress(const Name: string): Pointer;
 function GetInterface(const IID: TGUID; out Obj): Boolean;
 class function GetInterfaceEntry(
 const IID: TGUID): PInterfaceEntry;
 class function GetInterfaceTable: PInterfaceTable;
 class function UnitName: string;
 class function UnitScope: string;
{$IFDEF AUTOREFCOUNT}
 function __ObjAddRef: Integer; virtual;
 function __ObjRelease: Integer; virtual;
{$ENDIF}
 function Equals(Obj: TObject): Boolean; virtual;
 function GetHashCode: Integer; virtual;
 function ToString: string; virtual;
 function SafeCallException(ExceptObject: TObject;
 ExceptAddr: Pointer): HResult; virtual;
 procedure AfterConstruction; virtual;
 procedure BeforeDestruction; virtual;
 procedure Dispatch(var Message); virtual;
 procedure DefaultHandler(var Message); virtual;
 class function NewInstance: TObject; virtual;
 procedure FreeInstance; virtual;
 destructor Destroy; virtual;
 public
 property RefCount: Integer read FRefCount;
 property Disposed: Boolean read GetDisposed;
 end;

Unicode and Class Names

Overloaded methods like MethodAddress and FieldAddress can take either a Uni-
codeString (UTF-16, as usual) or a ShortString parameter that is treated as a UTF-
8 string. In fact, the versions taking a normal Unicode string, convert them by call-
ing the function UTF8EncodeToShortString:
function TObject.FieldAddress(const Name: string): Pointer;
begin
 Result := FieldAddress(UTF8EncodeToShortString(Name));

Marco Cantù, Object Pascal Handbook

17: TObject and the System Unit - 503

end;

Since Unicode support was introduces in the language, the class names in Object
Pascal internally use the ShortString representation (an array of one-byte charac-
ters), but with an UTF-8 encoding rather than the traditional ANSI encoding of the
ShortString type. This happens both at the TObject level and at the RTTI level.

For example, the ClassName method is implemented (with some really ugly low level
code) as:

class function TObject.ClassName: string;
begin
 Result := UTF8ToString (
 PShortString (PPointer (
 Integer(Self) + vmtClassName)^)^);
end;

Similarly in the TypInfo unit, all the functions accessing class names convert the
internal UTF-8 ShortString representations to a UnicodeString. Something similar
happens for property names.

The System Unit

While the TObject class has clearly a fundamental role for the language, making it
very difficult to say if it is part of the language or of the run-time library, there are
other low level classes in the System unit that constitute a fundamental and inte-
grated part of the compiler support. Most of the content of this unit, though, is
made of low level data structures, simple records structures, functions and proce-
dures, and a few classes.

Here I'm going to focus mostly on the classes, but it is undeniable that many other
features in the System unit are key to the language. For example, the system unit
defines so-called “intrinsic” functions, that don't have actual code but are resolved
directly by the compiler. An example is SizeOf, which the compiler directly replaces
with the actual size of the data structure that was passed as parameter.

You can gain an idea of the special role of the System unit by reading the comment
added to its inception (mostly to explain why browsing system symbols leads to this
unit... but not the symbol you were looking for):

{ Predefined constants, types, procedures, }
{ and functions (such as True, Integer, or }
{ Writeln) do not have actual declarations.}
{ Instead they are built into the compiler }
{ and are treated as if they were declared }

Marco Cantù, Object Pascal Handbook

504 - 17: TObject and the System Unit

{ at the beginning of the System unit. }

Reading the source code of this unit can be rather tedious, also because here you
can find some of the lower level code of the entire run-time library. So I've decided
to describe only a very limited selection of its content.

Selected System Types

As mentioned above, the System unit defines core data types and many types aliases
for different numeric types, other ordinal types and strings. There are other core
data types (comprising enumerations, records, and strong type aliases) used at the
low level by the system, that is worth having a look to:

· TVisibilityClasses is an enumeration used for RTTI visibility settings (see
Chapter 16 for more details)

· TGUID is a record used to represent a GUID on Windows, but also on all other
supported operating systems

· TMethod is a core record representing the structure used for event handler, with a
pointer to a method address and one to a current object (mentioned briefly in
Chapter 10)

· TMonitor is a record implementing a thread synchronization mechanism (called
“monitor”) invented by C.A.R Hoare and Per Brinch Hansen and detailed on
wikiPedia under the voice “Monitor synchronization”. This is a core threading
support feature of the language itself, as the TMonitor information is attached to
any object in the system.

· TDateTime is a strongly typed alias of the Double type, used to store date infor-
mation (in the integral part of the value) and time information (in the decimal
part). Further aliases include the types TDate and TTime. These types are covered
in Chapter 2.

· THandle is an alias of numeric types, used to represent a reference to an operat-
ing system object, generally called a “handle” (as least in the Windows API
jargon).

· TMemoryManagerEx is a record holding the core memory operations that allows
replacing the system memory manager with a custom one (this is the newer ver-
sion of TMemoryManager) still available for backwards compatibility.

· THeapStatus is a record with information about the status of the heap memory,
shortly mentioned in Chapter 13.

Marco Cantù, Object Pascal Handbook

17: TObject and the System Unit - 505

· TTextLineBreakStyle is an enumeration indicating the line break style for text
files on the given operating system. The DefaultTextLineBreakStyle global vari-
able of this type holds the current information, used by many system libraries.
Similarly the sLineBreak constant expresses the same information as a string
value.

Interfaces in the System Unit

There are several interface types (and a few classes implementing interfaces at the
core level) that are part of the System unit are it is worth looking into. Interfaces
were covered in Chapter 11. Here are the most relevant interface-related types in the
System unit:

· IInterface is the basic interface type all other interfaces inherit from and has
the same fundamental role that TObject has for classes.

· IInvokable and IDispatch are interfaces supporting forms of dynamic invoca-
tion (partly tied to Windows COM implementation)

· Enumerator support and comparison operations are defined by the following
interfaces: IEnumerator, IEnumerable, IEnumerator<T>, IEnumerable<T>, ICom-
parable, IComparable<T>, and IEquatable<T>.

There are also a few core classes that offer a basic implementation of interfaces. You
often inherit from these classes when implementing an interface, as also covered in
Chapter 11:

· TInterfacedObject, a class that has a basic implementation of reference count-
ing and interface ID checking

· TAggregatedObject and TContainedObject, two classes that offer special imple-
mentation for aggregated object and the implements syntax.

Selected System Routines

The number of intrinsic and standard procedures and functions in the System unit
is quite large, but most of them are not commonly used. Here is a very limited selec-
tion of core functions and procedures every Object Pascal developer should know
about:

· CheckForCyclesProc is used to verify the existence of cycle references among
objects under ARC. It can be used only in ARC compilers

Marco Cantù, Object Pascal Handbook

506 - 17: TObject and the System Unit

· Move is the core memory copy operation in the system, just copying the given
number of bytes from a memory location to another (very powerful, very fast, but
a tad dangerous)

· The ParamCount and the ParamStr functions can be used for processing com-
mand line parameters of an application (and do actually work on GUI systems
like Windows and Mac as well).

· Random and Randomize are two classic functions (likely coming from BASIC) pro-
viding you with random values (but truly random only if you remember to call
Randomize)

· A significant number of core mathematical functions, totally omitted here

· Many string processing and string conversion functions (between UTF-16 Uni-
code, UTF-8, ANSI, and other string formats), some of which are platform
specific

note Some of these functions have an indirect definition. In other words, the function is actually a
pointer to the real function, so that the original system behavior can be dynamically replaced in
code at runtime. (If you know what you are doing, of course, as this can be a good way to trash the
entire system).

Predefined RTTI Attributes

The last group of data types that I want to mention in this chapter relates to
attributes, the extra RTTI information you can attach to any symbol of the language.
This topic was covered in Chapter 16, but there I didn't mention the predefined
attributes in the system.

Here are the attribute classes defined in the System unit:

· TCustomAttribute is the base class for all custom attributes. This is the base
class you have to inherit attributes from (and it is the only way a class is identi-
fied by the compiler as being an attribute, as there is no special declaration
syntax).

· WeakAttribute is used to indicate weak references under ARC (see Chapter 13)

· UnsafeAttribute is also used under ARC for special processing (also covered in
Chapter 13)

· RefAttribute is apparently used for reference values.

· VolatileAttribute indicates volatile variables, which can be modified externally
and should not be optimized by the compiler

Marco Cantù, Object Pascal Handbook

17: TObject and the System Unit - 507

· StoredAttribute is an alternative way to express the stored flag of a property

· HPPGENAttribute controls C++ interface file (HPP) generation

· HFAAttribute is currently undocumented (but it relates to ARM 64-bit architec-
ture)

There is more to the System unit, but that's for expert developers. I'd rather want to
move to the last chapter, where I'm touching the Classes unit and some or the RTL
capabilities.

Marco Cantù, Object Pascal Handbook

508 - 17: TObject and the System Unit

Marco Cantù, Object Pascal Handbook

18: Other Core RTL Classes - 509

18: other core rtl

classes

If the TObject class and the System unit can be considered to all effect as being a
structural part of the language, something needed by the compiler itself for building
any application, everything else in the runtime library can be considered as optional
extensions to the core system.

The RTL has a very large collection of system functions, encompassing the most
common standard operations and partially dating back to the Turbo Pascal days,
pre-dating the Object Pascal language. Many units of the RTL are collections of
functions and routines, including core utilities (SysUtils), mathematical functions
(Math), string operations (StringUtils), date and time processing (DateUtils) and
the like.

In this book I don't really want to delve into this more traditional part of the RTL,
but rather focus on core classes, that are foundations of the visual component
libraries used in Object Pascal (VCL and FireMonkey) and also of other subsystems.
The TComponent class, for example, defines the concept of “component-based” archi-
tecture. It is also fundamental for memory management and other base features.
The TPersistent class is key for streaming component representations.

Marco Cantù, Object Pascal Handbook

510 - 18: Other Core RTL Classes

There are many other classes we could look at, as the RTL is extremely large and
encompasses the file system, the core threading support, the parallel programming
library, string building, many different types of collections and containers classes,
core geometrical structures (like points and rectangles), core mathematical struc-
tures (like vectors and matrixes), and much, much more.

Given the focus of the book is really the Object Pascal language, and not a guide to
the libraries, here I'm going to focus only on a few selected classes, chosen either for
their key role or because they have been introduced over recent years and are
largely ignored by developers.

The Classes Unit

The unit at the foundation of the Object Pascal RTL class library (and also of the vis-
ual libraries) is appropriately called System.Classes. This unit contains a large
collection of mostly assorted classes, without a specific focus. It is worth having a
brief look at the important ones, and follow up with an in-depth analysis of the most
important.

The Classes in the Classes Unit

So here is the short list (of roughly half of the classes actually defined in the unit):

· TList is a core list of pointers which is often adapted to be an untyped list. In
general it is recommended to use TList<T> instead, as covered in Chapter 14.

· TInterfaceList is a thread-safe list of interfaces implementing IInterfaceList,
worth a second look (but not covered here).

· TBits is a very simple class for manipulating individual bits in a number or some
other value. It is much higher level that doing bit manipulation with shifts and
binary or and and operators.

· TPersistent is a fundamental class (the base class of TComponent), covered in
detail in the next section.

· TCollectionItem and TCollection are classes used to define collection proper-
ties, that is properties with an array of values. These are important classes for
component developers (and indirectly when using components), not as much for
generic end users code.

Marco Cantù, Object Pascal Handbook

18: Other Core RTL Classes - 511

· TStrings is an abstract list of strings, while TStringList is an actual implemen-
tation of the base TStrings class providing storage for the actual strings. Each
item also has an object attached, and these are the standard way to use string
lists for name/value string pairs. There is some further information about this
class in the section “Using String Lists” at the end of this chapter.

· TStream is an abstract class representing any sequence of bytes with sequential
access, which can encompass many different storage options (memory, files,
strings, sockets, BLOB fields, and many others). The Classes unit defines many
of the specific stream classes, including THandleStream, TFileStream, TCustom-
MemoryStream, TMemoryStream, TBytesStream, TStringStream, and
TResourceStream. Other specific streams are declared in different RTL units.
You can read an introduction to streams in the section “Introducing Streams” of
this chapter.

· Classes for low-level component streaming, like TFiler, TReader, TWriter, and
TParser, mostly used by component authors... and not even that often by them.

· TThread class, which defines support for platform-independent, multi-threaded
applications. The is also a class for asynchronous operations, called TBaseAsyn-
cResult.

· Classes for the implementation of the observer pattern (used for example in vis-
ual live bindings), including TObservers, TLinkObservers, and
TObserverMapping.

· Classes for specific custom attributes like DefaultAttribute, NoDefaultAt-
tribute, StoredAttribute, and ObservableMemberAttribute.

· The fundamental TComponent class, the base class of all visual and non visual
components in both VCL and FireMonkey, covered in detail later in this chapter.

· Classes for actions and action lists support (actions are abstraction of “com-
mands” issues by UI elements or internally), including TBasicAction and
TBasicActionLink.

· The class representing a non visual component container, TDataModule.

· Higher level interfaces for file and stream operations, including TTextReader and
TTextWriter, TBinaryReader and TBinaryWriter, TStringReader and TString-
Writer, TStreamReader and TStreamWriter. These classes are also covered in this
chapter.

Marco Cantù, Object Pascal Handbook

512 - 18: Other Core RTL Classes

The TPersistent Class

The TObject class has a very important subclass, one of the foundations of the entire
library, called TPersistent. If you look to the methods of the class, its importance
might be surprising... as the class does very little. One of the key elements of the
TPersistent class is that it is defined with the special compiler option {M+}, whose
role is to enable the published keyword, covered in Chapter 10.

The published keyword has a fundamental role for streaming properties, and this
explains the name of the class. Originally, only classes inheriting from TPersistent
could be used as the data type of published properties. The extension of RTTI in
later versions of the Object Pascal compiler changed the picture a bit, but the role of
the published keyword and the {$M+} compiler option are still there.

note Using today's compiler, if you add the published keyword to a class that doesn't inherit from
TPersistent and hasn't got the {$M+} compiler flag, the system will add the proper support any-
way, indicating that with a warning.

What is the specific role of the TPersistent class in the hierarchy? First, it serves as
the base class of TComponent, which I'll introduce in the next section. Second, it is
used as the base class for data types used for property values, so that these proper-
ties and their internal structure can be properly streamed. Examples are classes
representing list of strings, bitmaps, fonts, and other objects.

If the most relevant feature of the TPersistent class is its “activation” of the pub-
lished keyword, it still has a couple of interesting methods worth examining. The
first is the Assign method, which is used to make a copy of the object data from one
instance to another (a deep copy, not a copy of the references). This is a feature each
persistent class used for property values should manually implement (as there is no
automatic deep copy operation in the language). The second is the reverse opera-
tion, AssignTo, which is protected. These two methods and the other few available
in the class are mostly used by component writers, rather than by application devel-
opers.

The TComponent Class

The TComponent class is the cornerstone of the components libraries that are most
often used in conjunction with Object Pascal compilers. The concept of a component
is basically that of a class that has some extra design-time behavior, specific stream-
ing capabilities (so that the design time configuration can be saved and restored in a

Marco Cantù, Object Pascal Handbook

18: Other Core RTL Classes - 513

running application), and the PME (property-method-event) model we discussed in
Chapter 10.

This class defines a significant number of standard behaviors and features, intro-
duces its own memory model based on a concept of objects ownership, cross
components notifications, and much more. While not doing a complete analysis of
all of the properties and methods, it is certainly worth focusing on some of the key
features of the TComponent class for its central role in the RTL.

Another critical features of the TComponent class is the fact is introduces a virtual
Create constructor, critical for the ability of creating an object from a class refer-
ence whilst still invoking the specific constructor code of the class. We touched on it
in Chapter 12, but this is a peculiar feature of the Object Pascal language, worth
understanding.

Components Ownership

The ownership mechanism is a key element of the TComponent class. If a component
is created with an owner component (passed as parameter to its virtual construc-
tor), this owner component becomes responsible for destroying the owned
component. In short, each component has a reference to its owner (the Owner prop-
erty), but also a list of components it owns (the Components array property) and
their number (the ComponentCount property).

By default, when you drop a component in a designer (a form, a frame or a data
module), this is considered the owner of the component. When you are creating a
component in code, is up to you to specify an owner, or pass nil (in which case you'll
be responsible for freeing the component from memory yourself).

You can use the Components and ComponentCount properties to list the components
owned by a component (aComp in this case), with code like:

var
 I: Integer;
begin
 for I := 0 to aComp.ComponentCount – 1 do
 aComp.Components[I].DoSomething;

Or use the native enumeration support, by writing:

var
 childComp: TComponent;
begin
 for childComp in aComp do
 childComp.DoSomething;

Marco Cantù, Object Pascal Handbook

514 - 18: Other Core RTL Classes

When a component is destroyed, it removes itself from the owner list (if any) and it
destroys all of the component it owns. This mechanism is crucial to memory man-
agement in Object Pascal: Given there is no garbage collection, ownership can solve
most of your memory management issues, as we partially saw in Chapter 13.

As I mentioned, generally all of the components in a form or data module have the
form or data module as owner. As long as you free the form or data module, the
components they hosts are also destroyed. This is what happens when components
are created from a stream.

Components Properties

Beside the core ownership mechanism (which also includes notifications and other
features not covered here) any component has two published properties:

· Name is a string with the component name. This is used to find a component
dynamically (calling the FindComponent method of the owner) and to connect the
component with the form field referring to the it. All components owned by the
same owner must have different names, but their name can also be empty. Two
short rules here: set proper component names to improve your code readability
and never change the name of a component at runtime (unless you are really
aware of the possibly nasty side effects).

· Tag is a NativeInt value (used to be an Integer in the past) not used by the library
but available for you to connect extra information to the component. The type is
size-compatible with pointers and object references, which are often stored in a
component's Tag.

Component Ownership under ARC

The definition of component ownership changes slightly under ARC compilers, but
not that much. The main difference is that the components list is a regular list of
references, while the reference back from the component to its owner is a weak ref-
erence. This is a snippet from the class declaration:

type
 TComponent = class(TPersistent, IInterface,
 IInterfaceComponentReference)
 private
 [Weak] FOwner: TComponent;

Notice that if you use the weak attribute in code compiled with the classic Delphi
compiler, this will be ignored. The rest of the code is basically unchanged.

Marco Cantù, Object Pascal Handbook

18: Other Core RTL Classes - 515

Component Streaming

The streaming mechanism used by both FireMonkey and VCL to create FMX or
DFM files is based around the TComponent class. Here is a short summary.

The Object Pascal streaming mechanism saves the published properties and events
of a component and its sub-components. That's the representation you get in a DFM
or FMX file, and also what you get if you copy and paste a component from the
designer into a text editor. There are methods to obtain the same information at run
time, but it goes beyond this short introduction.

A key element is that the streaming is not a complete set of the published properties
of a component. The streaming includes the published properties with a value dif-
ferent from their default value (in other words, default values are not saved to
reduce the size) and only if they are marked as stored (which is the default). A prop-
erty with stored set to false (or a function returning false), won't be saved.
Furthermore, there is a mechanism to add extra “fake” properties to the stream and
read them back. So you can have values in the stream that don't match with a pub-
lished property.

When a component is re-created from the stream file, the following sequence
occurs:

· The component's virtual Create constructor is called (executing the proper ini-
tialization code)

· The properties and events are loaded from the stream (in case of events, remap-
ping the method name to the actual method address in memory)

· The Loaded virtual method is called to finalize loading (and components can do
extra custom processing, this time with the property values available)

Modern File Access

Borrowing from its ancestor Pascal language, Object Pascal still has keywords and
core language mechanisms for processing files. These were basically been depre-
cated when Object Pascal was introduced and I'm not going to touch on them in this
book. What I'm going to cover in this section, instead, is a couple of modern tech-
niques for processing files, introducing the IOUtils unit, the stream classes, and the
readers and writers classes. I'm not going to delve much into any of these topics, but
just provide a short summary and very few demos.

Marco Cantù, Object Pascal Handbook

516 - 18: Other Core RTL Classes

The Input/Output Utilities Unit

The System.IOUtils unit is a relatively recent addition to the Run Time Library. It
defines three records of mostly class methods: TDirectory, TPath, and TFile.

While it is quite obvious that TDirectory is for browsing folders and finding its files
and sub-folders, it might not be so clear what is the difference between a TPath and
TFile. The first, TPath, is used for manipulating file name and directory names,
with methods for extracting the drive, file name with no path, extension and the
like, but also for manipulating UNC paths. The TFile record, instead, lets you check
the file time stamps and attributes, but also manipulate a file, writing to it or copy-
ing it.

As usual, it can be worth looking at an example. The IoFilesInFolder application
project can extract all of the sub-folders of a given folder and it can grab all of the
files with a given extension available under that folder.

Extracting Subfolders

The program can fill a list box with the list of the folders under a directory, by using
the GetDirectories method of the TDirectory record, passing as parameter the
value TSearchOption.soAllDirectories. The result in a string array which you can
enumerate:

procedure TFormIoFiles.btnSubfoldersClick(Sender: TObject);
var
 pathList: TStringDynArray;
 strPath: string;
begin
 if TDirectory.Exists (edBaseFolder.Text) then
 begin
 ListBox1.Items.Clear;
 pathList := TDirectory.GetDirectories(edBaseFolder.Text,
 TSearchOption.soAllDirectories, nil);
 for strPath in pathList do
 ListBox1.Items.Add (strPath);
 end;
end;

Searching Files

A second button of the program lets you get all of the files of those folders, by scan-
ning each directory with a GetFiles call based on a given mask. You can have more
complex filtering by passing an anonymous method of type TFilterPredicate to an
overloaded version of GetFiles.

Marco Cantù, Object Pascal Handbook

18: Other Core RTL Classes - 517

This example uses the simpler mask-based filtering and populates an internal string
list. The elements of this string list are then copied to the user interface after remov-
ing the full path, keeping only the file name. As you call the GetDirectories method
you get only the sub-folders, but not the current one. This is why the program
searches in the current folder first and then looks into each sub-folder:

procedure TFormIoFiles.btnPasFilesClick(Sender: TObject);
var
 pathList, filesList: TStringDynArray;
 strPath, strFile: string;
begin
 if TDirectory.Exists (edBaseFolder.Text) then
 begin
 // clean up
 ListBox1.Items.Clear;

 // search in the given folder
 filesList := TDirectory.GetFiles (edBaseFolder.Text, '*.pas');
 for strFile in filesList do
 sFilesList.Add(strFile);

 // search in all subfolders
 pathList := TDirectory.GetDirectories(edBaseFolder.Text,
 TSearchOption.soAllDirectories, nil);
 for strPath in pathList do
 begin
 filesList := TDirectory.GetFiles (strPath, '*.pas');
 for strFile in filesList do
 sFilesList.Add(strFile);
 end;

 // now copy the file names only (no path) to a listbox
 for strFile in sFilesList do
 ListBox1.Items.Add (TPath.GetFileName(strFile));
 end;
end;

In the final lines, the GetFileName function of TPath is used to extract the file name
from the full path of the file. The TPath record has a few other interesting methods,
including a GetTempFileName, a GetRandomFileName, a method for merging paths, a
few to check if they are valid or contain illegal characters, and much more.

Introducing Streams

If the IOUtils unit is for finding and manipulating files, when you want to read or
write a file (or any other similar sequential access data structure) you can use the
TStream class and its many descendant classes. The TStream abstract class has just a
few properties (Size and Position) along with the basic interface all stream classes

Marco Cantù, Object Pascal Handbook

518 - 18: Other Core RTL Classes

share, with the main Read and Write methods. The concept expressed by this class is
sequential access. Every time you read and write a number of bytes, the current
position is advanced by that number. For most streams, you can move the position
backwards, but there can also be unidirectional streams.

Common Stream Classes

As I mentioned earlier, the Classes unit defines several concrete stream classes...
includes the following ones:

· THandleStream defines a disk file stream referenced with a file handle.

· TFileStream defines a disk file stream referenced by a filename.

· TBufferedFileStream is an optimized disk file stream which uses a memory buf-
fer for extra performance. This stream class has been introduced in Delphi 10.1
Berlin.

· TMemoryStream defines a stream of data in memory, that you can also access
using a pointer.

· TBytesStream represents a stream of bytes in memory, that you can also access
like an array of bytes

· TStringStream associates a stream to a string in memory.

· TResourceStream defines a stream that can read resource data linked into the
executable file of an application.

Using Streams

Creating and using a stream can be as simple as creating a variable of the specific
type and calling a component's methods to load content from the file. For example,
given a stream and a memo component you can write:

aStream := TFileStream.Create (FileName, fmOpenRead);
Memo1.Lines.LoadFromStream (aStream);

As you can see in this code, the Create method for file streams has two parameters:
the name of the file and some flag indicating the requested access mode. As I men-
tioned streams support read and write operations, but these are rather low level, so
I'd rather recommend using the readers and writers classes discussed in the next
section.

What a direct use of stream provides is comprehensive operations, like loading an
entire stream in the code snippet above, or copying one into another:

procedure CopyFile (SourceName, TargetName: String);
var

Marco Cantù, Object Pascal Handbook

18: Other Core RTL Classes - 519

 Stream1, Stream2: TFileStream;
begin
 Stream1 := TFileStream.Create (SourceName, fmOpenRead);
 try
 Stream2 := TFileStream.Create (TargetName,
 fmOpenWrite or fmCreate);
 try
 Stream2.CopyFrom (Stream1, Stream1.Size);
 finally
 Stream2.Free;
 end
 finally
 Stream1.Free;
 end
end;

Using Readers and Writers

A very nice approach for writing to and reading from streams is to use the reader
and writer classes that are part of the RTL. There are six reading and writing
classes, defined in the Classes unit:

● TStringReader and TStringWriter work on a string in memory (directly or
using a TStringBuilder)

● TStreamReader and TStreamWriter work on a generic stream (a file stream,
a memory stream, and more)

● TBinaryReader and TBinaryWriter work on binary data rather that text.

Each of the text readers implements a few basic reading techniques:

function Read: Integer; overload;
function ReadLine: string;
function ReadToEnd: string;

Each of the text writers has two sets of overloaded operations without (Write) and
with (WriteLine) an end-of-line separator. Here is the first set:

procedure Write(Value: Boolean); overload;
procedure Write(Value: Char); overload;
procedure Write(const Value: TCharArray); overload;
procedure Write(Value: Double); overload;
procedure Write(Value: Integer); overload;
procedure Write(Value: Int64); overload;
procedure Write(Value: TObject); overload;
procedure Write(Value: Single); overload;
procedure Write(const Value: string); overload;
procedure Write(Value: Cardinal); overload;
procedure Write(Value: UInt64); overload;
procedure Write(const Format: string;

Marco Cantù, Object Pascal Handbook

520 - 18: Other Core RTL Classes

 Args: array of const); overload;
procedure Write(Value: TCharArray;
 Index, Count: Integer); overload;

Text Readers and Writers

For writing to a stream, the TStreamWriter class uses a stream or creates one using
the filename, an append/create attribute, and the Unicode encoding passed as
parameters.

So we can write, as I did in the ReaderWriter application project:

var
 sw: TStreamWriter;
begin
 sw := TStreamWriter.Create('test.txt',
 False, TEncoding.UTF8);
 try
 sw.WriteLine ('Hello, world');
 sw.WriteLine ('Have a nice day');
 sw.WriteLine (Left);
 finally
 sw.Free;
 end;

For reading the TStreamReader, you can work again on a stream or a file (in which
case it can detect the encoding from the UTF BOM marker):

var
 sr: TStreamReader;
begin
 sr := TStreamReader.Create('test.txt', True);
 try
 while not sr.EndOfStream do
 Memo1.Lines.Add (sr.ReadLine);
 finally
 sr.Free;
 end;

Notice how you can check for the EndOfStream status. Compared to a direct use of
text streams (or even strings), these classes are particularly handy to use, and pro-
vide good performance.

Binary Reader and Writer

The classes TBinaryReader and TBinaryWriter are meant for managing binary data
rather than text files. These classes generally encapsulate a stream (a file stream or
any type of in-memory stream, including sockets and database tables BLOB fields)
and have overloaded Read and Write methods.

Marco Cantù, Object Pascal Handbook

18: Other Core RTL Classes - 521

As a (rather simple) example I've written the BinaryFiles application project. In its
first part this program writes a couple of binary elements to a file (the value of a
property and the current time) and reads them back, re-assigning the property
value:

procedure TFormBinary.btnWriteClick(Sender: TObject);
var
 bw: TBinaryWriter;
begin
 bw := TBinaryWriter.Create('test.data', False);
 try
 bw.Write(Left);
 bw.Write(Now);
 Log ('File size: ' + IntToStr (bw.BaseStream.Size));
 finally
 bw.Free;
 end;
end;

procedure TFormBinary.btnReadClick(Sender: TObject);
var
 br: TBinaryReader;
 time: TDateTime;
begin
 br := TBinaryReader.Create('test.data');
 try
 Left := br.ReadInt32;
 Log ('Left read: ' + IntToStr (Left));
 time := br.ReadDouble;
 Log ('Time read: ' + TimeToStr (time));
 finally
 br.Free;
 end;
end;

The key rule in using these reader and writer classes is that you have to read the
data in the same order you wrote it, or else you'll totally mess up the data. In fact,
only the binary data of individual fields is saved, with no information about the field
itself. Nothing prevents you from interposing data and metadata in the file, like sav-
ing the size of the next data structure before the actual value or a token referring the
field.

Building Strings and String Lists

After having a look at files and streams, I want to spend a little time focusing on
ways of manipulating string and lists of strings. These are very common operations

Marco Cantù, Object Pascal Handbook

522 - 18: Other Core RTL Classes

and there is a rich set of RTL features focused on them. Here I'm only going to
introduce a few.

The TStringBuilder class

I have already mentioned in Chapter 6, that unlike other languages, Object Pascal
has full support for direct string concatenation, which is actually a rather fast opera-
tion. The language RTL, however, also includes a specific class for assembling a
string out of fragments of different data types, called TStringBuilder.

As a simple example of the use of the TStringBuilder class, consider the following
code snippet:

var
 sBuilder: TStringBuilder;
 str1: string;
begin
 sBuilder := TStringBuilder.Create;
 sBuilder.Append(12);
 sBuilder.Append('hello');
 str1 := sBuilder.ToString;
 sBuilder.Free;
end;

Notice that we have to create and destroy this TStringBuilder object. Another ele-
ment you can notice above is that there are many different data types that you can
pass as parameters to the Append function.

Other interesting methods of the TStringBuilder class include an AppendFormat
(with an internal call to Format) and an AppendLine that adds the sLineBreak value.
Along with Append, there is a corresponding series of Insert overloaded methods,
as well as a Remove and a few Replace methods.

note The TStringBuilder class has a nice interface and offers good usability. In terms of performance,
though, using standard string concatenation and formatting functions can provide better results,
unlike other programming languages that define immutable strings and have very bad perfor-
mance in case of pure string concatenation.

Method Chaining in StringBuilder

A very specific feature of the TStringBuilder class is that most methods are func-
tions that return the current object they have been applied to.

This coding idiom opens up the possibility of method chaining, that is calling a
method on the object returned by the previous one. Instead of writing:

Marco Cantù, Object Pascal Handbook

18: Other Core RTL Classes - 523

 sBuilder.Append(12);
 sBuilder.AppendLine;
 sBuilder.Append('hello');

you can write:

 sBuilder.Append(12).AppendLine.Append('hello');

which can be formatted as:

 sBuilder.
 Append(12).
 AppendLine.
 Append('hello');

I tend to like this syntax better than the original one, but I know it is just syntactic
sugar and some people do prefer the original version with the object spelled out on
each line. In any case, keep in mind that the various calls to Append don't return new
objects (so no potential memory leaks), but the exact same object to which you are
applying the methods.

Using String Lists

Lists of strings are a very common abstraction used by many visual components, but
are also used as a way to manipulate text made of separate lines. There are two main
classes for processing lists of strings:

· TStrings is an abstract class to represent all forms of string lists, regardless of
their storage implementations. This class defines an abstract list of strings. For
this reason, TStrings objects are used only as properties of components capable
of storing the strings themselves.

· TStringList, a subclass of TStrings, defines a list of strings with its own storage.
You can use this class to define a list of strings in a program.

The two classes of lists of strings also have ready-to-use methods to store or load
their contents to or from a text file, SaveToFile and LoadFromFile (which are fully
Unicode enabled). To loop through a list, you can use a simple for statement based
on its index, as if the list were an array, or a for-in enumerator.

Marco Cantù, Object Pascal Handbook

524 - 18: Other Core RTL Classes

The Run-Time Library is Quite Large

There is a lot more to the RTL that you can use along with Object Pascal compilers,
encompassing a lot of core features for development on multiple operating systems.
Covering the entire Run-Time Library in detail would easily fill another book of the
same size as this one.

If we consider only the main portion of the library, that is the “System” namespace,
it includes the following units (from which I've removed a few rarely used ones):

· System.Actions includes the core support for the actions architecture, which
provides a way to represent user commands connected, but abstracted, from the
user interface layer.

· System.AnsiStrings has the old functions for processing Ansi strings (only on
Windows), covered in Chapter 6.

· System.Character has the intrinsic type helpers for Unicode characters (the
Char type), already covered in Chapter 3.

· System.Classes provides core system classes and is the unit I covered in detail
in the first part of this chapter.

· System.Contnrs includes the old, non generic, container classes like objects list,
dictionary, queue, and stack. I recommend using the generic version of the same
classes, when possible.

· System.ConvUtils has a library of conversion utilities for different measurement
units

· System.DateUtils has functions for processing date and time values

· System.Devices interfaces with system devices (like GPS, an accelerometer, and
so on).

· System.Diagnostics defines a record structure for precise measurement of
elapsed time in testing code, which I've occasionally used in the book.

· System.Generics has actually two separate units, one for generic collections and
one for generic types. These units are covered in Chapter 14.

· System.Hash has the core support for defining hash values.

· System.ImageList includes an abstract, library independent implementation for
managing lists of images and portions of a single image as a collection of ele-
ments.

· System.IniFiles defines an interface for processing INI configuration files,
often found in Windows.

Marco Cantù, Object Pascal Handbook

18: Other Core RTL Classes - 525

· System.IOUtils defines records for file system access (files, folders, paths),
which were covered earlier in this chapter.

· System.JSON includes same core classes for processing data in the commonly
used JavaScript Object Notation, or JSON.

· System.Math defines functions for mathematical operations, including trigono-
metric and financial functions. It also has other units in its namespace for
vectors and matrixes.

· System.Messaging has shared code for messages handling on different operating
systems.

· System.NetEncoding includes processing for some common Internet encodings,
like base64, HTML, and URL.

· System.RegularExpressions defines regular expression (regex) support.

· System.Rtti has the entire set of RTTI classes, as explained in Chapter 16.

· System.StrUtils has the core and traditional string processing functions.

· System.SyncObjs defines a few classes for synchronizing multi-threaded applica-
tions.

· System.SysUtils has the basic collection of system utilities, with some of the
most traditional ones dating back to the early days of the compiler.

· System.Threading includes the interfaces, records and classes of the fairly recent
Parallel Programming Library.

· System.Types has some core additional data types, like TPoint, TRectangle, and
TSize records, the TBitConverter class, and many more basic data types used by
the RTL.

· System.TypInfo defines the older RTTI interface, also introduced in Chapter 16,
basically superseded by those in the System.RTTI unit.

· System.Variants and System.VarUtils have functions for working with variants
(a language feature covered in Chapter 5).

· System.Zip interfaces a file compression and decompression library.

There are also several other portions of the RTL that are sub-sections of the System
name space, with each section encompassing multiple units (occasionally a large
numbers, like the System.Win namespace), including HTTP clients (System.Net),
and Internet of Things support (System.Beacon, System.Bluetooth, System.Sen-
sors, and System.Tether). There are also, of course, translated APIs and headers
file for interfacing with all of the supported operating systems.

Marco Cantù, Object Pascal Handbook

526 - 18: Other Core RTL Classes

Again, there is a wealth of ready to use RTL functions, types, records, interfaces,
and classes, that are there for you to explore, to leverage the power of the Object
Psscal. Take your time browsing the system documentation to learn more too.

In Closing

The end of this chapter marks the end of the book, save for the following three
appendixes. This is my first book focused exclusively on the Object Pascal language,
and I'll be doing my best effort to keep updating it and maintaining the book text
and the examples over time. Again refer to the Introduction for getting the latest
book source code and visit the book web site for future information and updates.

I hope you've enjoyed reading the book as much as I've liked writing it and writ-
ing about Object Pascal over the last 20 years.

Marco Cantù, Object Pascal Handbook

end. - 527

end.

This final section of the book has a few appendices, that focus on specific side issues
worth considering, but out of the flow of the text. There is a short history of the Pas-
cal and Object Pascal languages and a glossary.

Appendix Summary

Appendix A: The Evolution of Object Pascal

Appendix B: Glossary of Terms

Appendix C: Index

Marco Cantù, Object Pascal Handbook

528 - end.

Marco Cantù, Object Pascal Handbook

A: The Evolution of Object Pascal - 529

a: the evolution of

object pascal

Object Pascal is a language built for the growing range of today's computing devices,
from smartphones and tablets to desktops and servers. It didn't just appear out of
thin air. It has been carefully designed on a solid foundation to be the tool of choice
for modern programmers. It provides an almost ideal balance between the speed of
programming and the speed of the resulting programs, clarity of syntax and power
of expression.

The solid foundation that Object Pascal is built upon is the Pascal family of pro-
gramming languages. In the same way that Google's Go language or Apple's
Objective-C language are rooted in C, Object Pascal is rooted in Pascal. No doubt
you would have guessed that from the name.

This short appendix includes a brief history of the family of languages and actual
tools around Pascal, Turbo Pascal, Delphi's Pascal, and Object Pascal. While it is not
really necessary to read this to learn the language, it is certainly worth understand-
ing the language's evolution and where it is today.

The Object Pascal programming language we use today in Embarcadero develop-
ment tools was invented in 1995 when Borland introduced Delphi, which at the time

Marco Cantù, Object Pascal Handbook

530 - A: The Evolution of Object Pascal

was its new visual development environment. The first Object Pascal language was
extended from the language already in use in the Turbo Pascal products, where the
language was generally referenced as Turbo Pascal. Borland didn't invent Pascal, it
only helped make it very popular, and extend its foundations to overcome some of
its limitations compared to the C language.

The following sections cover the history of the language from Wirth's Pascal to the
most recent LLVM-based Delphi's Object Pascal compiler for ARM chips and
mobile devices.

Wirth’s Pascal

The Pascal language was originally designed in 1971 by Niklaus Wirth, professor at
the Polytechnic of Zurich, Switzerland. The most complete biography of Wirth is
available at http://www.cs.inf.ethz.ch/~wirth.

Pascal was designed as a simplified version of the Algol language for educational
purposes. Algol itself was created in 1960. When Pascal was invented, many pro-
gramming languages existed, but only a few were in widespread use: FORTRAN,
Assembler, COBOL, and BASIC. The key idea of the new language was order, man-
aged through a strong concept of data types, declaration of variables, and structured
program controls. The language was also designed to be a teaching tool, that is to
teach programming using best practices.

Needless to say that the core tenets of Wirth's Pascal have had a huge influence on
the history of all programming languages, well beyond and above those still based
on the Pascal syntax. As for teaching languages, too often schools and universities
have followed other criteria (like job requests or donations from tool vendors)
rather than looking at which language helps learning the key concepts of program-
ming better. But that is another story.

Turbo Pascal

Borland's world-famous Pascal compiler, called Turbo Pascal, was introduced in
1983, implementing "Pascal User Manual and Report" by Jensen and Wirth. The
Turbo Pascal compiler has been one of the best-selling series of compilers of all
time, and made the language particularly popular on the PC platform, thanks to its

Marco Cantù, Object Pascal Handbook

A: The Evolution of Object Pascal - 531

balance of simplicity and power. The original author was Anders Hejlsberg, later
father of the C# language at Microsoft.

Turbo Pascal introduced an Integrated Development Environment (IDE) where you
could edit the code (in a WordStar compatible editor), run the compiler, see the
errors, and jump back to the lines containing those errors. It sounds trivial now, but
previously you had to quit the editor, return to DOS; run the command-line com-
piler, write down the error lines, open the editor and jump to the error lines.

Moreover Borland sold Turbo Pascal for 49 dollars, where Microsoft's Pascal com-
piler was sold for a few hundred. Turbo Pascal's many years of success contributed
to Microsoft eventual dropping its Pascal compiler product.

You can actually download a copy of the original version of Borland's Turbo Pascal
from the Museum section of the Embarcadero Developer Network:

http://edn.embarcadero.com/museum

note After the original Pascal language, Nicklaus Wirth designed the Modula-2 language, an extension
of Pascal syntax now almost forgotten, which introduced a concept of modularization very similar
to the concept of units in early Turbo Pascal and today's Object Pascal.

A further extension of Modula-2 was Modula-3, which had object-oriented features similar to
Object Pascal. Modula-3 was even less used than Modula-2, with most commercial Pascal lan-
guage development moving towards Borland and Apple compilers, until Apple abandoned Object
Pascal for Objective-C, leaving Borland with almost a monopoly on the language.

The early days of Delphi’s Object
Pascal

After 9 versions of Turbo and Borland Pascal compilers, which gradually extended
the language into the Object Oriented Programming (OOP) realm, Borland released
Delphi in 1995, turning Pascal into a visual programming language. Delphi
extended the Pascal language in a number of ways, including many object-oriented
extensions which are different from other flavors of Object Pascal, including those
in the Borland Pascal with Objects compiler (the last incarnation of Turbo Pascal).

Marco Cantù, Object Pascal Handbook

532 - A: The Evolution of Object Pascal

note Year 1995 was really a special year for programming languages, as it saw the debut of Delphi's
Object Pascal, Java, JavaScript, and PHP. These are some of the most popular programming lan-
guages still in use today. In fact, most other popular languages (C, C++, Objective-C, and COBOL)
are much older, while the only newer popular language is C#. For a history of programming lan-
guages you can see http://en.wikipedia.org/wiki/History_of_programming_languages.

With Delphi 2, Borland brought the Pascal compiler to the 32-bit world, actually re-
engineering it to provide a code generator common with the C++ compiler. This
brought many optimizations previously found only in C/C++ compilers to the Pas-
cal language. In Delphi 3 Borland added to the language the concept of interfaces,
making a leap forward in the expressiveness of classes and their relationships.

With the release of version 7 of Delphi, Borland formally started to call the Object
Pascal language the Delphi language, but nothing really changed in the language at
that time. At that time Borland also created Kylix, a Delphi version for Linux, and
later created a Delphi compiler for Microsoft .NET framework (the product was Del-
phi 8). Both projects were later abandoned, but Delphi 8 (released at the end of
2003) marked a very extensive set of changes to the language, changes that were
later adopted in the Win32 Delphi compiler and all other following compilers.

Object Pascal From CodeGear to
Embarcadero

With Borland unsure about its investments in development tools, later versions like
Delphi 2007, were produced by CodeGear, a subsidiary of the main company. This
subsidiary (or business unit) was later sold to Embarcadero Technologies, the cur-
rent owner of the Delphi and C++Builder product lines (including the combined
RAD Studio offerings). After that release, the company re-focused on growing and
extending the Object Pascal language, adding long-awaited features like Unicode
support (in Delphi 2009), generics, anonymous methods or closures, extended run-
time type information or reflection, and many other significant language features
(mostly covered in Part III of this book).

At the same time, along side the Win32 compiler the company introduced a Win64
compiler (in Delphi XE2) and a Mac OS X compiler, getting back to a multi-plat-
form strategy after the attempt done earlier on Linux with the short-lived Kylix
product. This time however the idea was to have a single Windows development
environment and cross-compile to other platforms. The Mac support was only the

Marco Cantù, Object Pascal Handbook

A: The Evolution of Object Pascal - 533

beginning of the company's multi-device strategy, embracing desktop and mobile
platforms, like iOS and Android. This strategy was made possible by the adoption of
a new GUI framework, called FireMonkey.

Going Mobile

The shift to mobile and the first Object Pascal compiler for ARM chips (as all previ-
ous platforms Delphi supported were only on Intel x86 chips) have been tied to an
overall re-architecture of the compilers and the related tools (or “compiler
toolchain”) based on the open LLVM compiler architecture. The ARM compiler for
iOS released in Delphi XE4 was the first Object Pascal compiler based on LLVM, but
also the first to introduce some new features like Automatic Reference Counting (or
ARC) and a substantial “cleanup” of the string data types.

Later in the same year (2013), Delphi XE5 added support for the Android platform,
with a second ARM compiler based on LLVM. To summarize, Delphi XE5, shipped
with 6 compilers for the Object Pascal language (for the Win32, Win64, Mac OS X,
iOS Simulator on Mac, iOS ARM, and Android ARM support). All these compilers
support a largely common language definition, with a few significant differences
I've covered in detail throughout the book.

In the first few months of 2014, Embarcadero released a new development tool
based on the same core mobile technologies and called Appmethod. Appmethod
used the same Object Pascal compiler previously found only in Delphi. In April
2014, the company also released the XE6 version of Delphi, while September 2014
saw the third release of Appmethod and Delphi XE7, followed in spring 2015 by
Delphi XE8, which included the first ARM 64-bit compiler, targeting iOS.

Marco Cantù, Object Pascal Handbook

534 - A: The Evolution of Object Pascal

As of early 2016, Embarcadero released two further new versions of Delphi, 10 Seat-
tle and 10.1 Berlin, and decided to retire the AppMethod product.

Marco Cantù, Object Pascal Handbook

B: Glossary - 535

b: glossary

A

Abstract Class A class that is not fully defined and provides only the
interface of the method that subclasses should imple-
ment.

Ambiguous call This is the error message you receive in case the com-
piler has two or more options to resolve a function
call and has no way to determine automatically which
one you are trying to call.

Android The name of Google's operating system for phones
and tablets, embraced by hundreds of hardware ven-
dors (beside Google) given its open nature. Android is
currently the most used operating system of the
world, having surpassed Microsoft Windows.

Anonymous Method An anonymous method or anonymous function is a
function that is not associated with a function name
and can be assigned to a variable or passed as an
argument to another function, which can later exe-
cute its code.
You might think that anonymous methods are a little

Marco Cantù, Object Pascal Handbook

536 - B: Glossary

magical compared with regular functions. Well they
are! The real magic is that they can access variables
from the block in which they are declared even if they
finally run in a different block.
The anonymous function and the variables it can
access are known as a closure, which is another name
used for the same feature.

API An Application Programming Interface (API) is pro-
vided by software (like operating systems) so that
application programs can work with it. For example,
when an application displays a line of text on a
screen, typically it calls a function in the computer's
GUI. The collection of functions provided by the com-
puter's GUI is known as the GUI's API.

Generally when software provides an API for the lan-
guage, it is written in. For example, the Microsoft
Windows provides an API geared towards the C and
C++ languages.

Note The Object Pascal Windows unit provides an Object
Pascal API to Microsoft Windows removing the has-
sle of directly calling functions written to be called
from C or C++.

B

Boolean Expression A Boolean expression is an expression that evaluates
to either true or false. A simple example being 1 = 2
which happens to be false. The Boolean expression
does not have to be a traditional mathematical
expression, it could simply be a variable of the Bool-
ean type or even a call to a function which returns a
Boolean value.

Marco Cantù, Object Pascal Handbook

B: Glossary - 537

C

Cardinal A Cardinal number is one of the natural numbers.
Simply put that means a number that can be used to
count things and that is always greater than zero.

Class A class is a definition of the properties and methods
and data fields that an object (of that class) will have
when it is created.

Note Not all object oriented languages require classes to
define objects. Objects in JavaScript, IO and Rebol
can be defined directly without first defining a class.

Note The definition of a record is very similar to the defi-
nition of a class in Object Pascal. A record has
members which fulfill the same function as proper-
ties do for a class and procedures and functions
which do what methods do for a class.

Code Point The numeric value of an element of the Unicode char-
acter set. Each letter, number, punctuation of each
alphabet of the world has a Unicode code point repre-
senting it.

Compiler Directive A compiler directive is a special instruction to the
compiler, that alters its standard behavior. Compiler
directives are assigned with special words prefixed by
the $ sign, or can be set in the Project Options.

Components Components are prebuilt, ready-to-use code objects
that can be easily combined with both application
code and other components to dramatically reduce
the time taken to develop applications.

The VCL library and the FireMonkey Platform are two
large collections of such components supplied with
Delphi.

COM Component Object Model is a core part of the
Microsoft Windows architecture.

Control A control is an element of a GUI such as a button, a
text entry field, an image container, etc. Controls are
often indicated as visual components.

Marco Cantù, Object Pascal Handbook

538 - B: Glossary

CPU The CPU or Central Processing Unit is the core of any
computer and what actually executes the code. The
Object Pascal language statements need to be trans-
lated to assembly code to be understood by the CPU.
Notice you have a CPU view in the debugger, not
something for the newcomers. The CPU often works
along side an FPU.

D

Data Type A data type is a specific category of data such as inte-
gers. In Object Pascal, both a variable which contains
data (either directly or indirectly) and the value con-
tained have a value.

Note The value is actually stored in the executable pro-
gram as binary data in a form determined by its data
type.

Design Patterns Looking at software architectures that different devel-
opers use to solve different problems, you can notice
similarities and common elements. A design pattern
is the acknowledgment of such a common design,
expressed in a standard way, and abstracted enough
to be applicable in a number of different situations.
The design patterns movement in the software world
started in 1994 when Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides wrote the book
“Design Patterns, Elements of Reusable Object-Ori-
ented Software” (Addison-Wesley, 1994, ISBN: 0-
201-633612). The authors are often indicated as
“Gamma et al.”, but more frequently as the “Gang of
Four” or simply “GoF”. The book is often colloquially
referenced as the "GoF book".
In the GoF book the authors describe the notion of
software patterns, indicate a precise way of describing
them, and provide a catalog of 23 patterns, divided in
three groups: creational, structural, and behavioral.

Marco Cantù, Object Pascal Handbook

B: Glossary - 539

DLL A Dynamic Link Library is a library of functions that
are not included in an application's executable code.
Instead, when the application runs, it loads the
library into memory and is then able to call the func-
tions contained in the library. These libraries are
normally designed to be used by many applications.
On platforms other than Windows, the same type of
library is called a Shared Object (or SO).

E

Event A special property of a class that allows attaching a
specific “behavior” to an object, to be executed when
something (the “event”) occurs. Events are part of the
RAD development model.

F

FireMonkey FireMonkey (or more official the FM Platform) or
FMX is a library of visual and non-visual components
supplied with Delphi. The components are cross-plat-
form, so they'll work equally well on Windows, OS X,
iOS and Android.

Form Form is the term used for a main window in the VCL
and FireMonkey.

File System A file system is part of a computer's operating system
that organizes how data is stored on the computer
and manages data storage and retrieval.

FPU The FPU or Floating Point Unit is a companion to the
CPU focused on executing complex floating point
number calculations extremely fast.

Function A function is a block of code that performs some
action (or computation) and returns a result. It can

Marco Cantù, Object Pascal Handbook

540 - B: Glossary

accept a pre-specified number of parameters to vary
the computation.

Function Overloading Function overloading is a feature of programming
languages that are strict about variable types that
allows a programmer to declare different versions of a
Function that can accept different types of parameter.

G

Global Memory Global memory is a static memory area for global
variables of your applications. This memory is used
for the entire lifetime of an application, and it cannot
grow (see Heap memory for dynamic allocated mem-
ory area). Global memory is used sparingly in Object
Pascal applications.

GUI A Graphical User Interface that allows users to inter-
act with computers, tablets and phones through
graphical icons and other visual indicators. Most user
interaction with a GUI is performed by pointing,
touching, pressing, swiping and other gestures using
a mouse (or similar pointing device) or fingers.

H

Heap Memory The heap is a memory area for dynamically allocated
memory blocks. As the name implies, there is no
structure or sequence in heap memory allocation.
Whenever a block is needed it is taken from a free
area. Lifetime of individual blocks is different, and
order of allocation and de-allocation are not related.
The heap memory is used for the data of objects,
strings, dynamic arrays and other reference types
(See References), but also for manually allocated
blocks (see Pointers). The heap is large but not infi-

Marco Cantù, Object Pascal Handbook

B: Glossary - 541

nite, and if you don't release unused objects from
memory, your application will eventually run out of
memory.

I

IDE An Integrated Development Environment is a single
application that provides a developer with a wide
range of tools so that they can be highly productive.
As a minimum an IDE will provide a source code edi-
tor, build automation tools and a debugger. The
modern idea of an IDE was invented along with the
first few Turbo Pascal compilers than came from Bor-
land, the precursors of todays' Object Pascal IDEs by
Embarcadero Technologies.

The Object Pascal IDE supplied with Delphi is very
sophisticated and includes, for example, GUI design,
code templates, code refactoring and integrated unit
testing.

(Type) Inheritance Type inheritance is one of the core tenets of Object
Oriented Programming (OOP). The idea is that a data
type can extend an existing data type, adding new fea-
tures to it. This type extension if known as type
inheritance, along with terms like base and descen-
dant class, or parent and child class.

Interface Generally refers to an abstract declaration of what a
software module can do. In Object Pascal an interface
is a purely abstract class definition (made only of
methods, and with no data), like in C# or Java. See
Chapter 11 for full coverage.
However the language also still has the concept of
interface for a unit, in which case this is the section of
the unit that declares what it visible to other units.
The same interface keyword is used in both cases.

iOS The name of the operating system powering Apple's
iPhones, iPads, and similar devices.

Marco Cantù, Object Pascal Handbook

542 - B: Glossary

M

Method A method is a function or procedure that is tied to an
object. Methods have access to all the data stored in
the object.

O

Object An object is a combination of some data items (prop-
erties and fields) and code (methods). An object is an
instance of a class, which defines a family (0r type) of
objects.

OOP Object Oriented Programming is the conceptual
structure behind Object Pascal, based on concepts
like classes, inheritance, and polymorphism. Modern
Object Pascal supports also other programming para-
digms, thanks to features like generics, anonymous
methods and reflection.

Ordinal Type An ordinal type is type with the concept of sequence.
You can think of integer numbers, but also characters
have a sequence, and even custom enumerated types.

OS X The name of the operating system of Apple Mac com-
puters.

P

Pointer A pointer is a variable holding directly a memory
address. A pointer can refer to the location of some
data or of a function in memory. Pointers are not
commonly used, while references (see Reference) are
opaque and managed pointers that are extremely
common, but also significantly easier to use.

Marco Cantù, Object Pascal Handbook

B: Glossary - 543

Polymorphism Polymorphism is the ability for a call to a method to
assume “different forms” (that is, end up doing differ-
ent operations) depending on the object is is applied
to. It is a standard trait of OOP languages.

Procedure A procedure is a block of code (or sub-program) that
can be called from other parts of a program. A proce-
dure can accept parameters to vary what it does.
Differently from a function, a procedure doesn't
return a value.

Project Options A set of configuration options that affect the overall
structure of an application project, but also how the
compiler and linker behave.

Property A property is an “abstract” data item of an object, and
can be directly mapped to data or use methods to
read and write the data.

R

RAD Rapid Application Development is a characteristic of
a development environment that make it easy and
fast to build applications. RAD tools are generally
based on visual designers, although this is a rather old
definition seldom used today.

Record A simple record is a collection of data items that are
stored in a structured way. Records are defined in a
type definition showing the order and type of the
individual data items in the record.

Object Pascal also includes advanced records which
can have methods similarly to an object.

Recursion Recursion or recursive call is a way to describe a func-
tion that keep calling itself until a given condition is
met. A recursive call is often a better alternative to a
loop or cycle. An example of a recursive implementa-
tion of a multiplication, would be to take the value of
the first number, and add to it the same number mul-

Marco Cantù, Object Pascal Handbook

544 - B: Glossary

tiplied by the other minus one, until the other num-
bers becomes zero.

Reference A reference is a variable that refers to some data else-
where in memory, rather than storing it directly. In
Object Pascal variable of types like classes and string,
but also interfaces and dynamic arrays, are refer-
ences. Differently from pointers (see Pointers)
references are generally managed by the compiler and
runtime library and require little low-level knowledge
and direct memory manipulation by the developer.

RTTI (or Reflection) An acronym of Run Time Type Information, is the
ability to access type information (traditionally only
available to compilers) in the actual application.
Other programming environments refer to this fea-
ture as reflection.

Run-Time Library (RTL) This is a collection of pre-written routines that the
compiler automatically includes with application code
to build the executable application. It includes sup-
port for many fundamental operations, especially
those requiring interaction with the operating system
when the application is run (e.g. allocating memory,
reading and writing data, interacting with the file sys-
tem).

S

SDK A Software Development Kit is a set of software tools
with which to build software for a specific environ-
ment. A good example is the Android SDK which
provides both the API libraries and developer tools
necessary to build, test, and debug applications for
Android.

Note The Object Pascal and FireMonkey platform provide
units which allow programs to take advantage of the
Android API libraries and the IDEs handle building,
testing and debugging Android applications.

Marco Cantù, Object Pascal Handbook

B: Glossary - 545

Search Path A set of folders the compiler will search when looking
for an external unit referenced in a uses statement

Stack (memory) The stack if a dynamically and orderly allocated mem-
ory area. Every time you call a method, a procedure,
or a function, this reserves its own memory area (for
local variables, including temporary ones, and param-
eters). As the method returns, the memory is cleared,
in a very orderly fashion. The only real scenario for
running out of the stack memory is when a method
enters an infinite recursive call (see Recursion).

Note In most cases, local variables allocated on the stack
are not initialized to zero: you need to set their value
before using them.

U

Unicode Unicode is a standard way of recording individual text
characters as binary data (a sequence of 0s and 1s).
Text can be reliably exchanged between programs,
processed and displayed if it conforms to the Unicode
standard. The standard is very large covering more
than 110,000 different characters from around 100
different writing alphabets and scripts.

V

VCL The Visual Component Library is a massive set of Vis-
ual Components supplied with Delphi. The GUI
components of the VCL are native Windows GUI
components.

Virtual Methods A Virtual Method is a function or procedure declared
in the type definition of a class that can be overridden
by classes which are its sub-classes. The so-called
base class can also include a definition for the method

Marco Cantù, Object Pascal Handbook

546 - B: Glossary

that can be used by the sub-classes. If the base class
doesn't define a default version of the method, any
sub-class must provide a definition of the Virtual
Method.

W

Window A window is an area of the screen that contains GUI
elements with which a user can interact. A GUI appli-
cation can display multiple windows. In VCL and
FireMonkey, windows are defined using a Form.

Windows Is the name of Microsoft operating system, which pio-
neered (along with other operating systems of the
time like Apple Mac operating system) the concept of
graphical windows (see entry above).

Marco Cantù, Object Pascal Handbook

C: Index - 547

c: index

1
1252 Code Page...159
1900..75
1983..530
1995...1, 531

6
64-bit................................56, 64, 154, 398, 533

A
Abstract...34, 240p.
Abstract Classes...................................308, 535
Access Violations..381
ActionList...302
Adapter Pattern..324
Address Of.....................................138, 142, 153
AfterDestruction..263
AJAX...451
Algol...50, 530
Algorithms + Data Structures = Programs....81
Alignment..137, 219
Allen Bauer..4, 118, 362
Alphabet..158

Ambiguous Calls...................................107, 535
And...73
Anders Hejlsberg...........................195, 237, 531
Android...........................46, 533, 535, 539, 544
Angle Brackets.....................................389, 392
Anonymous Delegate...................................436
Anonymous Event Handlers........................445
Anonymous Methods...........................436, 535
ANSI...190
AnsiChar...60, 185
ANSIString...191p.
API..536, 544
Append...522
Apple..531, 541p., 546
Apple’s Instruments Tool.............................376
Application...261
Appmethod...533
ARC...105, 147, 201pp., 216, 263, 312, 353, 357,

360pp., 370, 514
ArcCosh..65
ARM Chips...533
Array...33
Array Properties..................................280, 304
Arrays..122
Arrays Of Records...135

Marco Cantù, Object Pascal Handbook

548 - C: Index

As....................................73, 244, 311, 323, 380
ASCII...158
Assembler...530
Assign..221, 353, 512
Assigned..155, 381
Assignments...48, 50
Attribute Classes..472
Attributes..471
Automatic Reference Counting....................357
AUTOREFCOUNT.......................................359
AutoSize..219

B
Banker's Rounding...78
Barry Kelly...468, 476
BASIC...28, 47, 530
Basic Multilingual Plane...............................162
BeforeConstruction......................................263
Begin...33
BOM Marker..520
Boolean...55, 60
Boolean Expression......................................536
Boolean Type..536
BoolToStr...60
Borland..530p.

Borland C++ 4.0 Object-Oriented
Programming...387
Break..93p., 102
Buffer Overruns..373
Button1Click...22
Byte...55
Byte Order Mark...162
ByteLength...186

C
C......27, 29, 46, 48, 50, 56, 58, 60, 73, 76, 82p.,

86p., 90, 95, 97, 103, 115, 122, 140
C#.....25, 27, 47, 50, 66, 69, 73, 86, 88, 96, 138,

195, 198, 200, 211, 223, 228, 234, 237, 242,
244, 252, 272p., 280, 282, 287, 289, 307, 326,

387, 405, 436
C++....25, 27, 40, 47, 58, 96, 103, 122, 143, 195,

208, 211, 217, 234, 252, 307, 387, 430, 532
Callback Functions.......................................330
Calling Convention.......................................351

Calling Conventions......................................114
Camel-casing..28
Captured Variable..440
Cardinal..55, 537
Caret..153
Cary Jensen..4
Case...33, 85p.
Case-insensitivity...27
Catch...252
Cdecl..114
Char...55, 60pp., 166
Characters..60
Chars[]..174p., 179
Checkbox..83
CheckForCycles..367
CheckForCyclesProc....................................505
Checking Memory..370
Chr..62, 78
Chris Bensen...281
Class..34, 537
Class Completion..197
Class Constraints...402
Class Constructors.........................38, 333, 400
Class Data...327
Class Helpers..342
Class Methods..327
Class Of...337
Class Operator..144
Class Properties..332
Class References...336
Class Var...331
Classes..196
Classes Unit..519
ClassInfo...496
ClassName...338, 495p.
ClassNameIs...496
ClassParent..496
ClassType..495p.
Clear...378
ClientDataSet..419
Closing..526
Closures..287, 436, 536
COBOL...530
Code..19
Code Completion.................31, 275p., 280, 290
Code Insights..31

Marco Cantù, Object Pascal Handbook

C: Index - 549

Code Parameters...................................101, 107
Code Point..537
Code Points...159
CodeGear..532
CodeRage..4
Coding In Delphi..306
COM........60, 105, 149, 192, 281, 308, 323, 537
Comma...86
Comments..25
Common Ancestor Class..............................228
Comp..64
Compare..179
Compiler Directive...

RTTI..458
$ALIGN...137
$DEFINE...43, 373
$ELSE...43
$HIGHCHARUNICODE......................169p.
$IF...43, 45
$IFDEF.....................................43p., 46, 117
$IFEND...43, 45
$INCLUDE...40, 46
$INLINE...111
$J...53
$M..284p., 455, 512
$RTTI...458p.
$SCOPEDENUMS.................................68p.
$StrongLinkTypes..................................460
$VARPROPSETTER...............................281
$WeakLinkRTTI.....................................460
$Z..68
$ZEROBASEDSTRING...........................176

Compiler Directives..........................26, 43, 537
Compiler Versions..44
ComponentCount...513
Components..513, 537
Compound Statements..................................82
Concatenating Strings...................................177
Concatenation..74
Conditional Defines.......................................43
Console Application.......................................20
Const...33, 353, 359
Constant Parameters....................................105
Constants..52
Constructor..34
Constructors.................213, 238, 262, 302, 377

Contains..179
Continue..93p.
Control Characters...61
Controls..537
Conversion..51
Conversions..77
ConvertFromUtf32.......................................168
Copy..128, 178
Copy-on-write..171p.
CountChars...179
Covariant Return Types...............................430
CPU...63, 78, 92, 538p.
Create............................228, 363, 378, 494, 515
Creating A Component.................................295
Currency...64
Current...297

D
Daniel Magin..376
Daniel Wolf...376
Data Types..55, 538
Date...74p.
DateTimeToStr...75
David I..4
DayOfWeek...76
De Morgan's Law..91
Debugger..253
Dec..58, 167
DecodeDate..76
Default...280, 398
Default Constructor Constraint...................408
Default Parameters......................................109
DefaultTextLineBreakStyle..........................505
DefaultUnicodeCodePage............................186
Delayed Loading...118
Delegation..286, 289
Delete..129
Delphi..2, 531, 537, 541
DeQuoted..179
Design Patterns..538
Design-time..283
Destroy.................................214, 228, 356, 363
Destructor.......................................34, 214, 355
Destructors...377
Dictionary...416
Dispose..154

Marco Cantù, Object Pascal Handbook

550 - C: Index

Disposed...361
DisposeOf..360pp., 364
Div...73p.
DLL...539
Do...34, 252
DoCompare...415
Dotted Unit Names..37
Double..33, 63
Downto...34
DupeString...182
Dynamic...239, 293
Dynamic Arrays....................................126, 129
Dynamic Binding..233
Dynamic Link Library..................................539

E
Early Binding...233
Editor Colors...31
EDivByZero..254
EExternalException......................................118
EInvalidCast...244
Elixir...100
Else...33, 84
Embarcadero Technologies..........2, 4, 532, 541
Empty..171
Encapsulation..............140, 204, 229, 272, 284
EncodeDate..76
End...33
EndOfStream...520
EndsWith..179
Enumerated Types...68
Enumeration..297
EProgrammerNotFound..............................255
Equals...179, 499
Erich Gamma...538
Erlang...100
Error Insight...31
EurekaLog..258
Event-Driven Programming........................286
Events.....................286pp., 290, 292, 301, 539
Example..

AdvancedExcept..........................265p., 268
AlignTest..137
Animals1..232pp.
Animals2..234p.
Animals3..241

AnonAjax.....................................450, 452p.
AnonButton...445
AnonLargeStrings...................................447
AnonymFirst...........................436, 439, 441
ArraysTest..123p.
AutoRTTI..285
BinaryFiles...521
CaseTest..85
CharsTest...61p., 88
CharTest..168
ClassConstraint.......................................402
ClassCtor...334
ClassHelperDemo...................................342
ClassRef..339p.
ClassStatic.......................................329, 332
ClicksCount...209
CodePoints..160
ControlHelper...344
CountObj...332
CreateComps...211p.
CustomerDictionary................................417
Date3..214p.
DateComp...296
DateComponent......................................297
DateCompTest...297
DateEvent..293, 297
DatePackage...296p.
DateProperties..278
Dates1..199
Dates2...206
Dates3..216
Dates4..218
DerivedDates.......................................226p.
DynamicEvents.......................................290
DynArray..127p.
DynArrayConcat......................................129
EncodingsTest...189
ErrorLog..261
ExceptFinally..259
ExceptionFlow...257
ExceptionsTest..252
ExpressionsTest..72
FloatTest...64
FlowTest..93, 102
FormatString...183
FormProperties.......................................276

Marco Cantù, Object Pascal Handbook

C: Index - 551

ForTest...88p.
FunctionsTest..97
FunctionTest....................................96, 99p.
GenericClassCtor.....................................401
GenericCodeGen.....................................396
GenericInterface...................................421p.
GenericMethod.......................................394
GenericTypeFunc.................................398p.
HelloConsole...20
HelloPlatform...46
HelloVisual..22
IdentifiersTest...27
IfTest..83p.
InliningTest..111
IntegersTest...57, 59
InterceptBaseClass..................................477
Intf101..309, 311
IntfConstraint......................405, 407p., 422
IntfContraints..421
IntfDemo......................................316p., 322
IntfError...313p.
IoFilesInFolder..516
KeyValueClassic......................................388
KeyValueGeneric....................................390
LargeString......................................177, 447
LeakTest..372
ListDemoMd2005................................411p.
LoopsTest..90
NestedClass...222
NestedTypes..221
NumbersEnumerator.............................298
ObjFromIntf..323
OpenArray....................................130p., 133
OperatorsOver......................................146p.
OverloadTest................................106, 108p.
ParamsTest...................................102, 104p.
PointersTest...154p.
ProcType..116
Protection..230p.
ReaderWriter..520
RecordMethods...............................140, 143
RecordsDemo..133
RecordsTest......................................135, 137
ReintroduceTest.....................................238
RttiAccess..469p.
RttiAttrib..473p.

RttiIntro..457
SafeCode......................................378p., 382
ShowUnicode...163
SmartPointers...430
StaticCallBack...330
StringHelperTest.....................................180
StringListVsDictionary...........................420
StringMetaTest.....................................185p.
Strings101..172
TimeNow...76
TypeAliasHelper.....................................348
TypeCompRules..............................391, 393
TypesList...460, 464
VariablesTest..51p.
VariantTest......................................150, 152
VarProp...281
ViewDate.................................219, 226, 278
VisualInheritTest....................................247
WebFind.......................................449p., 452
XmlPersist...485

Except..................................35, 252p., 255, 259
Exception......................................265, 267, 335
Exception Handling......................................251
Exceptions..377
Exceptions Handling......................................35
Exceptions Hierarchy...................................254
Exclude..71
Exit...94, 102
Explicit...145p.
Expression Context......................................436
Expressions..71p.
Extended..63
Extended RTTI...458
External Functions..117

F
Fabrizio Schiavi..3
Facebook..3
False...60
Fastcall..114
FastMM4...371, 373
Fields Alignments...137
File..33
File Access...515
File System...539
File Types..156

Marco Cantù, Object Pascal Handbook

552 - C: Index

Files..
DCU...40
DFM..283, 305
DPR...24, 42
FMX..283, 305
INC..40
INI...524
PAS..24, 40

Final Methods..242
Finalization......................................33, 38, 334
Finally...............35, 252, 258p., 354, 358, 378p.
FindComponent..514
FindHInstance..381
FindType..460
FireDAC..46
FireMonkey.............................21, 533, 537, 539
Floating Point...63
FloatToDecimal..78
FloatToStr..78
For...33, 86p., 297
For-in...88
Form..301p., 539, 546
Format......................................79, 131, 178, 182
FormatDateTime....................................76, 152
FormatFloat..79
Forms...276
FORTRAN..530
Forward..98
Forward Declarations....................................98
FPU..63, 538p.
Free.........201p., 214, 228, 263, 355p., 362, 364
FreeAndNil...........................203, 357, 360, 364
FreeInstance...376
FreeMem..374
Friend Classes..208
From...468
Function...34, 96, 539
Function Pointer...115

G
Gang Of Four..538
Garbage Collection.......................201, 349, 358
Generic Constraints.....................................402
Generic Containers.......................................410
Generic Dictionary.......................................416
Generic Methods..394

Generic Type Declaration............................392
GetDirectories...516
GetEnumerator..............................89, 297, 299
GetFiles...516
GetHashCode................................179, 481, 499
GetMem..352, 374
GetMemoryManagerState............................371
GetMemoryMap..371
GetMinimumBlockAlignment......................372
GetNumericValue...167
GetPackages...466
GetPropValue...286
GetType..460
GetTypeKind..398
GetUnicodeCategory.....................................167
GetUserName..117
GetWindowText...374
Global Memory....................................350, 540
Global Variables.......................51, 54, 302, 350
Google...535
Goto..94
Graphemes..159
GUI..536p., 540
GUID..309, 322, 422

H
Halt...94
Haskell..100
HasWeakRef...398
Heap...171, 351, 540
HFAAttribute...507
High...............................58, 123p., 127, 167, 176
HPPGENAttribute..507

I
IComparer...413p., 424
IDE....20, 25, 107, 141, 245, 275, 284, 296, 531,

541
Identifiers..26p.
IDispatch..505
IEnumerator..89
IEqualityComparer......................................424
If..33, 83p.
IfThen..165, 182
IInterface.........................308pp., 318, 322, 505

Marco Cantù, Object Pascal Handbook

C: Index - 553

IInvokable..505
Implementation.......................................33, 36
Implements...319, 505
Implicit...............................145p., 148, 427, 468
In..34, 70
Inc...58, 167, 274
Include..40, 71
Indentation...29
Indexers...280
IndexOf...179
IndexOfAny...179
Information Hiding.....................................204
Inheritance............................225, 231, 238, 541
Inherited.................................34, 216, 238, 248
InheritsFrom.............................338, 381, 496p.
Initialization.....................................33, 38, 334
Inline..34, 111
InnerException....................................265, 268
Insert...129, 178, 522
InstanceSize..............................338, 403, 495p.
Int...78
Int64...55
Integer..33, 55
Integer Types Helpers....................................56
InterestPayment...65
Interface...32, 34, 36
Interface Constraints...................................405
Interface Delegation.....................................318
Interface ID..422
Interface Properties......................................317
Interfaces....................307p., 311, 324, 370, 541
Internet Of Things..525
Interposer Class...................................325, 342
Intrinsic Record Helpers................................57
Intrinsic Type Helpers.....................................2
IntToStr..78
Invalid Typecast...468
Invoke...442, 470
IO..193
IOS..46, 533, 539, 541
Is..243p., 322p., 380
IsChecked...83
IsControl...167
IsDelimiter..179
IsEmpty...179
IsInArray..168

IsLetter...61
IsLetterOrDigit...167
IsLower...168
IsManagedType..398
IsNullOrWhiteSpace.....................................179
IsNumber..61, 167
ISO Encodings..158
IsPointerToObject..382
IsPunctuation...61
IsSurrogate...168
IsUpper...168
IsWhiteSpace..167
IUnknown..308

J
Java. . .1, 25, 27, 47, 50, 66, 73, 86, 96, 122, 143,

198, 200, 211, 223, 228, 234, 242, 252, 272p.,
282, 287, 307, 326, 532

JavaScript..2, 25, 27, 47p., 50, 90, 96, 122, 138,
149, 193, 211, 287, 436, 532

JclDebug...258
John Thomas..4
Join...178
JSON...525

K
Key-value Pair..388
Keywords..32

L
Label...219
Language Keywords.......................................32
LargeInt..56
LastIndexOf..179
Late Binding...233
Lazy Initialization.........................355, 417, 428
Leak Detection..371
Length..127, 171
Library..32
Library Path...40
Lifetime..54
Lifetime Of Local Variables.........................439
LIFO..351
ListBox..412

Marco Cantù, Object Pascal Handbook

554 - C: Index

ListView..163, 419
Literal Values...49
Literals..169
Little Endian...189
Live Templates...48
LLVM..357, 359, 533
Loaded..515
LoadFromFile...523
Local Variables...54
Loops..88, 90p.
Low................................58, 123p., 127, 167, 176
LowerCase...179
Lua..193
Lvalue...50

M
Mac OS X..45
MadExcept...258
Malcolm Groves...474
Malloc...376
Marco Cantu...4
Mastering Delphi..4
Max..111
MeanAndStdDev..65
MediaPlayer...235
Memo..22
Memory Leak..201
Message Handlers..239
MessageDlg..98
Metaclasses...337
Method...100
Method Chaining..522
Method Pointers...287
Methods..140, 199, 542
Methods Aliases...320
Microsoft...531, 546
Mod...73
Modula-2..531
MomentSkewKurtosis....................................65
Monitor Synchronization.............................504
Move...506
Multi-Dimensional Static Arrays.................124
Multiple Inheritance....................................307

N
Name...301, 514
Named Constructors....................................213
Named Types..66
Namespaces..41
NativeInt...56, 154
Nested Exceptions..265
Nested Types...221
NeverSleepOnMMThreadContention..........372
New...154
NewInstance...376
NEXTGEN..359
Nick Hodges...306
Nicklaus Wirth..81, 531
Niklaus Wirth...530
Nil....................................35, 151, 202, 356, 364
Not..73
Notification...416
Now..75p.
NULL...151
Null Statement...82
NumberBox..85
Numeric Types...55

O
Object...34, 542
Object Inspector........................290, 293, 295p.
Object Reference Model.......................200, 352
Object-oriented Programming..............193, 195
Objective-C........25, 73, 143, 149, 202, 357, 369
Objects..196, 199
Objects As Parameters.................................353
Odd...58
Of..33
Of Object..288, 292
On...252
OnChange...339
OnClick..............................288p., 292, 301, 446
OnCreate...163, 330
OnException...256, 261
OnMouseDown..339
OOP..541p.
Open Array Parameters................................130
Open-closed Principle..................................341
Operator Overloading...................................144

Marco Cantù, Object Pascal Handbook

C: Index - 555

Operators...35, 71p.
Or..73
Ord..58, 78, 167
Ordinal Type...542
Ordinal Types...55
OS X..539, 542
Out..105
Out-Of-Range...59
Overflow Checking...60
Overload...34, 106, 295
Overloaded Methods....................................216
Overloading..540
Override...............................34, 216, 234p., 295
Owner..354, 513
Ownership...513

P
Package...32
PadLeft..179
Parallel Programming Library.............450, 525
ParamCount...506
Parameters..101
Parametric Type...389
ParamStr..506
Parent...212, 340
ParentClass..338
Parse...58, 178
Pascal...114, 529p.
Peter Wood...3
PHP...149, 532
Piacenza..2
Pierre La Riche..371
Pointers.................................138, 153, 362, 542
Polymorphism.......................231, 233, 321, 543
Polytechnic Of Zurich..................................530
Position...517
Precedence..72
Pred..58
Pretty-printing...24
Private.........................34, 142, 204p., 207, 230
Procedural Types..114
Procedure...34, 96, 543
Program..32
Program File...42
Project Manager.....................................42, 296
Project Options.............................42p., 68, 543

Properties.....................272, 292, 304, 332, 543
Properties By Reference...............................281
Property..35
Protected.....................................35, 204, 229p.
Protected Hack...229
Public...35, 204, 283
Published...........................35, 282pp., 455, 512
Python...149

Q
QualifiedClassName.....................................496
QueryInterface...322
QuotedString..179
Quotes...49p.

R
RAD..543
RAD And OOP...300
RAD Studio...2
Raise..35, 252, 257
RaiseOuterException...................................266
Random..506
Randomize...506
Range Check Error...68
Range Checking..123
RawByteString..192
Ray Konopka..302
Read...35, 272, 518pp.
Read-only Property......................................273
Readers...519
Real...33, 63
Rebol...72, 193
Record..33, 543
Record Helper..346
Record Helpers...345
Record Type..133
Records Vs. Classes......................................203
Records With Methods.................................140
Recursion...99, 543
RefAttribute...506
Reference..544
Reference Counting...............................311, 369
Reference Parameters..................................103
Reference Types...443
Reference-counting.......................................171

Marco Cantù, Object Pascal Handbook

556 - C: Index

Reflection.....................................282, 455, 544
Register...28, 114, 296
RegisterClasses..306
RegisterComponents....................................296
RegisterExpectedMemoryLeak....................372
Reintroduce..................................237, 295, 302
Remove...178, 522
Repeat..34, 90
Replace..178, 181, 522
ReportMemoryLeaksOnShutdown..............372
Repository On GitHub.....................................3
ResemblesText..182
ReserveString...182
Result..96, 102
Return Type..96
Return Values...101
Reverse For...87
Robust Applications.....................................377
Round...78
RTTI........................282, 284pp., 305, 456, 544
RTTI Classes...462
Ruby..72, 149
Rudy Velthuis...65
Run Time Type Information........................456
Run-Time Library..544
Rvalue...50

S
SaveToFile..523
Scope..40
Scoped Enumerators......................................68
Screen...303
SDK..544
Sealed...34
Sealed Classes..242
Search Options...69
Search Path..40, 545
Self..................142, 210p., 287, 303, 328p., 356
Semicolon...82
Sender...291, 446
Set...33, 69
Set Operators...70
SetLength..126
SetMinimumBlockAlignment......................372
SetTimer...330
Shared Object...539

Shl...73
ShortCut Key..

Ctrl+/...25
Ctrl+C..197
Ctrl+D...25
Ctrl+Shift+C................................141, 275pp.
Ctrl+Shift+C..275
Ctrl+Shift+G...309
Ctrl+Shift+L..53
Ctrl+Shift+Up..141

ShortInt..55
ShortString..185, 192
ShowMessage...22
Shr..73
Single..33, 63
Singleton Pattern..................................312, 335
Singly-rooted Class Hierarchy.....................494
Size..58, 517
SizeOf..............................58, 134, 137, 398, 403
Slice...131
SLineBreak...505, 522
SmallInt..55
Smalltalk...149, 196
Smart Pointers...424
Sort...412
Source Code..3
Split...179
Square Brackets.....................................174, 471
Stack..257, 351, 545
Stack Overflow...99
Standard Template Library..........................410
StartsWith...179
Statements..81
Static Arrays...122
Static Class Methods....................................330
Stdcall..114
Steve Tendon..387
StoredAttribute..507
Streaming..515
Streams...517
Strict...35
Strict Private..207
String..33, 170
String Concatenation....................................172
String Helper..178
String Lists..521

Marco Cantù, Object Pascal Handbook

C: Index - 557

StringRefCount...185
StrToDateTime...76
StrToFloat..78
Structure Of A Program.................................36
Subclassing...226
Subrange...67
SubString..178
Succ..58
Support...322
Swift..202, 237
Switch...86
Synchronize..448
Syntax...24
Syntax Highlighting..31

T
TabControl..163
Table Of Contents...7
Tag..380, 514
TAggregatedObject...............................318, 505
TBasicAction...511
TBinaryReader...520
TBinaryWriter..520
TBits..510
TBufferedFileStream....................................518
TButton...339, 373, 411
TBytesStream...518
TCharacter..167
TCharHelper...167
TClass...338
TCollection...510
TComparer...413p.
TComponent.......................295, 302, 312, 511p.
TContainedObject..505
TCustomAttribute................................472, 506
TDataModule..511
TDate..75
TDateTime..........................74pp., 79, 206, 504
TDictionary...411, 420
TDirectory...516
TEdit...305, 339
Template Classes..387
TEncoding..188p., 192
TextFile...156
TFile..516
TFileStream..518

TFilterPredicate..516
TForm...245
TFormatSettings...77
TFunc...444
TGUID..345, 504
THandle...504
The Delphi Magazine...........................300, 326
THeapStatus..504
Then..33
This...143
Threads Synchronization.............................448
Throw...252
Time...74p.
Timer..77
TInterfacedObject....................310pp., 318, 505
TInterfaceList...510
TList......................................378, 380, 411, 510
TMemoryManagerEx...................................504
TMemoryStream...518
TMethod...287, 504
TMonitor..504
To..33
TObject201, 214, 228, 238, 245, 263, 308, 338,

356, 493p.
TObjectDictionary.................................411, 416
TObjectList...............................381, 410pp., 416
TObjectQueue..411, 416
TObjectStack...411, 416
ToCharArray...178
ToInteger..178
ToLower...61, 168, 179
Tools Palette...296
ToString..............................57, 60, 78, 267, 498
ToUpper..61p., 168, 179
TPath..516p.
TPersistent.......................283pp., 353, 510, 512
TProc..443
TQueue..411
TResourceStream...518
Trial Version...3
Trim..179
TRttiContext................................460, 463, 466
TRttiObject...462
TRttiType..461
True..60
Trunc..78

Marco Cantù, Object Pascal Handbook

558 - C: Index

Try...35, 252, 258p.
TryParse...58
TSingletonImplementation..................312, 424
TStack..411
TStopWatch...111
TStream..511, 517
TStreamReader..519p.
TStreamWriter...519p.
TStringBuilder......................................177, 522
TStringList............................353, 420, 511, 523
TStringReader..519
TStrings...280, 511, 523
TStringStream..518
TStringWriter...519
TTextLineBreakStyle....................................505
TTextWriter..485
TThread...448, 511
TTime..75
TUnicodeBreak...167
TUnicodeCategory..167
Turbo Pascal......................................530p., 541
TValue..467, 469
TVarData...132, 151
TVarRec..132
TVirtualMethodInterceptor.........................477
TVisibilityClasses.................................458, 504
Type..33
Type Aliases..347
Type Cast Operators.....................................243
Type Compatibility.......................................231
Type Compatibility Rules.............................393
Type Derivation..226
Type Name Equivalence.................................66
Type Promotions..148
Type-Variant Open Array Parameters..........131
Typecasting...77
TypeInfo...398
TypeScript...195

U
UCS4Char..63, 161, 167
UCS4String...191
UInt64..55
Unicode.............27, 49, 61p., 158, 163, 188, 545
Unicode Transformation Formats................161
Unit...32, 36

Generics.Collections.....................410p., 416
Generics.Defaults.....................312, 413, 423
System...................56, 75, 151, 156, 493, 503
System.Actions..524
System.AnsiStrings.................................524
System.Character.................61, 63, 167, 524
System.Classes.................367, 510, 519, 524
System.Contnrs...............................410, 524
System.ConvUtils....................................524
System.DateUtils...............................75, 524
System.Devices.......................................524
System.Diagnostics..........................112, 524
System.Hash...524
System.ImageList....................................524
System.IniFiles..524
System.IOUtils.......................69, 516p., 525
System.JSON..525
System.Math.......................65, 106, 111, 525
System.Messaging...................................525
System.NetEncoding...............................525
System.RegularExpressions....................525
System.Rtti......................................460, 525
System.StrUtils........................165, 182, 525
System.SyncObjs.....................................525
System.SysUtils.....75p., 165, 182, 188, 254,
335, 346, 443, 525
System.Threading...................................525
System.Types...525
System.TypInfo...............285, 399, 460, 525
System.Variants......................................525
System.Zip...525
Winapi.Windows......................................117

Unit Name..37
Unit Scope Names..38
UnitName...496
Unnamed Types...66
Unsafe..368
UnsafeAttribute...506
Until..34
UpCase..168
UpperCase...27, 179
User-Defined Data Types...............................65
Uses..32, 39, 42
UTF-16...161, 188
UTF-32..161
UTF-8...161p., 188, 190

Marco Cantù, Object Pascal Handbook

C: Index - 559

UTF32Char..191
UTF8String..191p.

V
Var..33, 48, 103
Variables...48
Variant..132
Variant Records..136
Variants...149, 151
VCL...537, 545
Virtual...34, 234p., 239
Virtual Class Methods..................................328
Virtual Method Table...................................239
Virtual Methods...545
Virtual Methods Interceptors......................476
Visibility...40, 54
Visual Basic..88, 138
Visual Component Library.............................21
Visual Form Inheritance..............................245
VmtInstanceSize..382
VmtSelfPtr..382
VolatileAttribute..506
VType..151

W
Weak References..................................364, 366
WeakAttribute..506
While...34, 90p.
White Space..28
WideChar...63
WideString..192
Windows.................................45, 535, 539, 546
Windows API.........................117, 119, 240, 330
With...34, 138p.
Wm_User...240
Word...55
Write..35, 272, 518pp.
Writers..519

X
Xcode...202
XML Streaming..484
Xor..73

_
__ObjAddRef...369
__ObjRelease...369
_AddRef...311p.
_Release...311p.

:
:=..50

@
@...73

#
#..169

=
=...50
==...50

€
€..159, 169

Marco Cantù, Object Pascal Handbook

560 - C: Index

Marco Cantù, Object Pascal Handbook

	begin
	A Book on Todays' Language
	Learn by Doing
	A Companion Web Site
	Acknowledgments
	About Myself, the Author

	Table of Contents
	Part I: Foundations
	Summary of Part I

	01: Coding in Pascal
	Let's Start with Code
	A First Console Application
	A First Visual Application

	Syntax and Coding Style
	Comments
	Symbolic Identifiers
	White Space
	Indentation
	Syntax Highlighting

	Language Keywords
	The Structure of a Program
	Unit and Program Names
	Units and Scope
	The Program File

	Compiler Directives
	Conditional Defines
	Compiler Versions
	Include Files

	02: Variables and Data Types
	Variables and Assignments
	Literal Values
	Assignment Statements
	Assignments and Conversion
	Initializing Global Variable
	Constants
	Resource String Constants
	Lifetime and Visibility of Variables

	Data Types
	Ordinal and Numeric Types
	Boolean
	Characters
	Floating Point Types

	Simple User-Defined Data Types
	Named vs. Unnamed Types
	Subrange Types
	Enumerated Types
	Set Types

	Expressions and Operators
	Using Operators
	Operators and Precedence

	Date and Time
	Typecasting and Type Conversions

	03: Language Statements
	Simple and Compound Statements
	The If Statement
	Case Statements
	The For Loop
	The for-in Loop

	While and Repeat Statements
	Examples of Loops
	Breaking the Flow with Break and Continue

	04: Procedures and Functions
	Procedures and Functions
	Forward Declarations
	A Recursive Function
	What Is a Method?

	Parameters and Return Values
	Exit with a Result
	Reference Parameters
	Constant Parameters
	Function Overloading
	Overloading and Ambiguous Calls
	Default Parameters

	Inlining
	Advanced Features of Functions
	Object Pascal Calling Conventions
	Procedural Types
	External Functions Declarations
	Delayed Loading of DLL Functions

	05: Arrays and Records
	Array Data Types
	Static Arrays
	Array Size and Boundaries
	Multi-Dimensional Static Arrays
	Dynamic Arrays
	Open Array Parameters

	Record Data Types
	Using Arrays of Records
	Variant Records
	Fields Alignments
	What About the With Statement?

	Records with Methods
	Self: The Magic Behind Records
	Records and Constructors
	Operators Gain New Ground

	Variants
	Variants Have No Type
	Variants in Depth
	Variants Are Slow

	What About Pointers?
	File Types, Anyone?

	06: All About Strings
	Unicode: An Alphabet for the Entire World
	Characters from the Past: from ASCII to ISO Encodings
	Unicode Code Points and Graphemes
	From Code Points to Bytes (UTF)
	The Byte Order Mark
	Looking at Unicode

	The Char Type Revisited
	Unicode Operations With The Character Unit
	Unicode Character Literals

	The String Data Type
	Passing Strings as Parameters
	The Use of [] and String Characters Counting Modes
	Concatenating Strings
	The String Helper Operations
	More String RTL
	Formatting Strings
	The Internal Structure of Strings
	Looking at Strings in Memory

	Strings and Encodings
	Other Types for Strings
	The UCS4String type
	Older String Types

	Part II: OOP in Object Pascal
	Summary of Part II

	07: Objects
	Introducing Classes and Objects
	The Definition of a Class
	Classes in Other OOP Languages
	The Class Methods
	Creating an Object

	The Object Reference Model
	Disposing Objects and ARC
	What's Nil?
	Records vs. Classes in Memory

	Private, Protected, and Public
	An Example of Private Data
	When Private Is Really Private
	Encapsulation and Forms

	The Self Keyword
	Creating Components Dynamically

	Constructors
	Managing Local Class Data with Constructors and Destructors
	Overloaded Methods and Constructors
	The Complete TDate Class

	Nested Types and Nested Constants

	08: Inheritance
	Inheriting from Existing Types
	A Common Base Class
	Protected Fields and Encapsulation
	Using the “Protected Hack”

	From Inheritance to Polymorphism
	Inheritance and Type Compatibility
	Late Binding and Polymorphism
	Overriding, Redefining, and Reintroducing Methods
	Inheritance and Constructors
	Virtual versus Dynamic Methods

	Abstracting Methods and Classes
	Abstract Methods
	Sealed Classes and Final Methods

	Safe Type Cast Operators
	Visual Form Inheritance
	Inheriting From a Base Form

	09: Handling Exceptions
	Try-Except Blocks
	The Exceptions Hierarchy
	Raising Exceptions
	Exceptions and the Stack

	The Finally Block
	Exceptions in the Real World
	Global Exceptions Handling
	Exceptions and Constructors
	Advanced Exceptions
	Nested Exceptions and the InnerException Mechanism
	Intercepting an Exception

	10: Properties and Events
	Defining Properties
	Properties Compared to Other Programming Langauges
	Code Completion for Properties
	Adding Properties to Forms
	Adding Properties to the TDate Class
	Using Array Properties
	Setting Properties by Reference

	The published Access Specifier
	Design Time Properties
	Published and Forms
	Automatic RTTI

	Event-Driven Programming
	Method Pointers
	The Concept of Delegation
	Events Are Properties
	Adding an Event to the TDate Class

	Creating a TDate Component
	Implementing Enumeration Support in a Class
	15 Tips About Mixing RAD and OOP
	Tip 1: A Form is a Class
	Tip 2: Name Components
	Tip 3: Name Events
	Tip 4: Use Form Methods
	Tip 5: Add Form Constructors
	Tip 6: Avoid Global Variables
	Tip 7: Never Use Form1 In TForm1 Methods
	Tip 8: Seldom Use Form1 In Other Forms
	Tip 9: Remove the Global Form1 Variable
	Tip 10: Add Form Properties
	Tip 11: Expose Components Properties
	Tip 12: Use Array Properties When Needed
	Tip 13: Use Side-Effects In Properties
	Tip 14: Hide Components
	Tip 15: Use an OOP Form Wizard
	Tips Conclusion (and Further Readings)

	11: Interfaces
	Using Interfaces
	Declaring an Interface
	Implementing the Interface
	Interfaces and Reference Counting
	Errors in Mixing References
	Weak And Unsafe Interface References
	Advanced Interface Techniques
	Interface Properties
	Interface Delegation
	Multiple Interfaces and Methods Aliases
	Interface Polymorphism
	Extracting Objects from Interface References

	Implementing An Adapter Pattern with Interfaces

	12: Manipulating Classes
	Class Methods and Class Data
	Virtual Class Methods and the Hidden Self Parameter
	Class Static Methods
	Class Data
	Class Properties
	A Class with an Instance Counter

	Class Constructors (and Destructors)
	Class Constructors in the RTL
	Implementing the Singleton Pattern

	Class References
	Class References in the RTL
	Creating Components Using Class References

	Class And Record Helpers
	Class Helpers
	Class Helpers and Inheritance
	Record Helpers for Intrinsic Types
	Helpers for Type Aliases

	13: Objects and Memory
	Global Data, Stack, and Heap
	Global Memory
	Stack
	Heap

	The Object Reference Model
	Passing Objects as Parameters

	Traditional Memory Management Tips
	Destroying Objects You Create
	Destroying Objects Only Once

	Welcome to ARC
	ARC Coding Style
	The Free and DisposeOf Methods Under ARC
	Summary of Objects Creation and Destruction under ARC and non-ARC Compilers
	Weak References
	The Unsafe Attribute
	The Unsafe Directive
	Behind Reference Counting
	Mixing Interfaces and Classes Under ARC

	Tracking and Checking Memory
	Memory Status
	FastMM4
	Tracking Leaks and Other Global Settings
	Buffer Overruns in the Full FastMM4
	Memory Management on Platforms Other than Windows
	Tracking Per-Class Allocations

	Writing Robust Applications
	Constructors, Destructors, and Exceptions
	Nested Finally blocks
	Dynamic Type Checking
	Is this Pointer an Object Reference?

	Part III: Advanced Features
	Chapters of Part III

	14: Generics
	Generic Key-Value Pairs
	Type Rules on Generics

	Generics in Object Pascal
	Generic Types Compatibility Rules
	Generic Methods for Standard Classes
	Generic Type Instantiation
	Generic Type Functions
	Class Constructors for Generic Classes

	Generic Constraints
	Class Constraints
	Specific Class Constraints
	Interface Constraints
	Interface References vs. Generic Interface Constraints
	Default Constructor Constraint
	Constraints Summary and Combining Them

	Predefined Generic Containers
	Using TList<T>
	Sorting a TList<T>
	Sorting with an Anonymous Method
	Object Containers
	Using a Generic Dictionary
	Dictionaries vs. String Lists

	Generic Interfaces
	Predefined Generic Interfaces

	Smart Pointers in Object Pascal
	A Smart Pointer Generic Record
	Interfaces to the Rescue
	Using the Smart Pointer
	Adding Implicit Conversion
	Adding Auto-Creation
	The Complete Smart Pointer Code

	Covariant Return Types with Generics
	Of Animals, Dogs, and Cats
	A Method with a Generic Result
	Returning a Derived Object of a Different Class

	15: Anonymous Methods
	Syntax and Semantics of Anonymous Methods
	An Anonymous Method Variable
	An Anonymous Method Parameter

	Using Local Variables
	Extending the Lifetime of Local Variables

	Anonymous Methods Behind the Scenes
	The (Potentially) Missing Parenthesis
	Anonymous Methods Implementation
	Ready To Use Reference Types

	Anonymous Methods in the Real World
	Anonymous Event Handlers
	Timing Anonymous Methods
	Threads Synchronization
	AJAX in Object Pascal

	16: Reflection and Attributes
	Extended RTTI
	A First Example
	Compiler Generated Information
	Weak and Strong Types Linking

	The RTTI Unit
	The RTTI Classes in the Rtti Unit
	RTTI Objects Lifetime Management and the TRttiContext record
	Displaying Class Information
	RTTI for Packages

	The TValue Structure
	Reading a Property with TValue
	Invoking Methods

	Using Attributes
	What is an Attribute?
	Attribute Classes and Attribute Declarations
	Browsing Attributes

	Virtual Methods Interceptors
	RTTI Case Studies
	Attributes for ID and Description
	XML Streaming
	Other RTTI-Based Libraries

	17: TObject and the System Unit
	The TObject Class
	Construction and Destruction
	Knowing About an Object
	More Methods of the TObject Class
	TObject's Virtual Methods
	TObject Class Summary
	Unicode and Class Names

	The System Unit
	Selected System Types
	Interfaces in the System Unit
	Selected System Routines
	Predefined RTTI Attributes

	18: Other Core RTL Classes
	The Classes Unit
	The Classes in the Classes Unit
	The TPersistent Class
	The TComponent Class

	Modern File Access
	The Input/Output Utilities Unit
	Introducing Streams
	Using Readers and Writers

	Building Strings and String Lists
	The TStringBuilder class
	Using String Lists

	The Run-Time Library is Quite Large
	In Closing

	end.
	Appendix Summary

	A: The Evolution of Object Pascal
	Wirth’s Pascal
	Turbo Pascal
	The early days of Delphi’s Object Pascal
	Object Pascal From CodeGear to Embarcadero
	Going Mobile

	B: Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	M
	O
	P
	R
	S
	U
	V
	W

	C: Index

